[Ки&М]

ВЫЧИСЛИТЕЛЬНАЯ АЭРО- И ГИДРОДИНАМИКА

УДК: 533.9

Неравновесная инициация объемного горения в двигателе внутреннего сгорания: моделирование и постановка эксперимента

А. А. Фирсов¹, Ю. И. Исаенков¹, М. Г. Крупский², В. Ю. Рудаков², Е. А. Филимонова¹, Д. А. Яранцев¹, С. Б. Леонов^{1,а}

¹ Объединенный институт высоких температур (ОИВТ РАН), Россия, 125412, г. Москва, ул. Ижорская, д. 13, стр. 2 ² Коломенский институт (филиал МГМУ), Россия, 140402, г. Коломна, ул. Октябрьской революции, д. 408

E-mail: a leonov@ihed.ras.ru

Получено 18 июня 2014 г. после доработки 15 октября 2014 г.

В данной работе представлены результаты экспериментального и расчетно-теоретического изучения влияния неравновесного химического возбуждения топливно-воздушной смеси на характеристики дизельного индикаторного процесса. Способом возбуждения является генерация высоковольтного стримерного разряда высокого давления непосредственно в камере сгорания на фазе сжатия топливно-воздушной смеси. Дано описание работы электро-разрядной системы, приведены результаты измерений и визуализации. Рассмотрена плазмо-химическая кинетика неравновесного воспламенения, и обсуждаются возможности построения редуцированной схемы описания химических процессов. Представлены результаты компьютерного моделирования газодинамических процессов, развивающихся на фоне горения, стимулированного электрическим разрядом в геометрической конфигурации, близкой к экспериментальной постановке.

Ключевые слова: горение, двигатель внутреннего сгорания, стримерный разряд, химическая кинетика, компьютерное моделирование

Nonequilibrium initiation of volumetric combustion in a combustion engine: modeling and experimental setup

A. A. Firsov¹, Yu. I. Isaenkov², M. G. Krupskiy², V. Yu. Rudakov², E. A. Filimonova¹, D. A. Yarantsev¹, S.B. Leonov¹

 ¹ Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), 125412, Izhorskaya st. 13 Bd. 2, Moscow, Russia
² Kolomna Institute (Branch of Moscow University of Mechanical Engineering), 140402,

Oktiabrskoj revolyucii st. 408, Kolomna, Russia

Abstract. — The paper presents results of experimental, computational and analytical study of the effect of nonequilibrium chemical activation of air-fuel mixture on effectiveness of Diesel process. The generation of a high-voltage multi-streamer discharge in combustion chamber at the compression phase is considered as the method of the activation. The description of electrical discharge system, results of measurement and visualization are presented. The plasma-chemical kinetics of nonequilibrium ignition is analyzed to establish a passway for a proper reduction of chemical kinetics scheme. The results of numerical simulation of gas dynamic processes at presence of plasma-assisted combustion in a geometrical configuration close to the experimental one are described.

Keywords: combustion, internal combustion engine, streamer discharge, chemical kinetics, computational fluid dynamics, numerical simulation

Citation: Computer Research and Modeling, 2014, vol. 6, no. 6, pp. 911-922 (Russian).

Работа ведется при поддержке грантов РФФИ № 12-08-00862-а и № 12-08-00994-а.

© 2014 Александр Александрович Фирсов, Юрий Иванович Исаенков, Михаил Георгиевич Крупский, Владимир Юрьевич Рудаков, Елена Александровна Филимонова, Дмитрий Алексеевич Яранцев, Сергей Борисович Леонов

Введение

Данная работа направлена на изучение процессов эффективного смешения, воспламенения и горения топливно-воздушных смесей в двигателях внутреннего сгорания при использовании электрического разряда для неравновесной плазмо-химической активации исходных компонентов горючей смеси непосредственно в камере сгорания. Мотивация проведения исследования включает в себя проработку возможных физико-химических схем для повышения экономичности двигателей внутреннего сгорания с пониженным уровнем выбросов, в том числе при использовании суррогатных топлив.

Анализ сложившейся ситуации показывает, что потенциал традиционных решений для повышения экономичности и снижения выбросов ДВС оказался в значительной степени исчерпан, в основном из-за ограничений на величину коэффициента избытка топлива (flammability limit), ER. Так, например, для смеси CH₄/воздух устойчивое горение ограничено при ER > 0.22, даже если температура газа T = 700 K [Egolfopoulos et al., 2007]. Наиболее серьезной проблемой является сокращение выбросов окислов азота NO_x, для решения которой требуется снижение максимальной температуры газов в камере сгорания, т. е. осуществления режима горения бедной смеси. При уменьшении ER также ожидается существенная экономия топлива. Решением проблемы было бы использование неравновесной схемы организации горения, при которой ограничения на ER могут быть существенно снижены.

Практической возможностью для перехода к неравновесной химии горения является применение высоковольтных электрических разрядов. Для полноценного использования неравновесных свойств плазмы генерация разрядов должна происходить непосредственно в цилиндре при повышенном уровне давления газа, что приводит к ряду проблем технического характера, прежде всего с электрической изоляцией. Другой задачей является генерация именно неравновесной плазмы с высоким уровнем приведенного электрического поля, E/N [Starikovskaia, 2006], и существенным уровнем энерговклада. Цель достигается применением мультиострийного электрода и специальной формы возбуждающего электрического импульса. Параллельно решается задача точной синхронизации момента подъема давления газа с положением поршня в цилиндре.

Системы зажигания электрического типа исторически используются в большинстве типов ДВС [MacKeand, 1997]. В случае адиабатического двигателя Дизеля высокая степень сжатия сильно усложняет задачу. В целом электрически управляемые системы являются более гибкими по сравнению с зажиганием от сжатия, однако, высокое давление в цилиндре и бедная/разбавленная смесь требуют более высокого напряжения в системе поджига для того, чтобы инициировать горение.

Нужно отметить, что искровая свеча зажигания является одной из наименее подверженных изменениям системой ДВС. Не считая материала электродов, их конструкция не претерпела значительных модификаций с момента изобретения в 1860 году. На протяжении десятилетий многие исследования были направлены на разработку альтернативных плазменных систем зажигания, которые могли бы устойчиво и надежно воспламенять бедные смеси при высоком давлении. Как правило, решение состоит в увеличении энергии разряда [New Scientist, 1975], что приводит к большим тепловым нагрузкам на электроды и их эрозии. Много исследований посвящено лазерному зажиганию, однако, коммерческое использование такой технологии ограничено высокой ценой и сложностью системы [Joshi, 2011]. Лабораторные демонстрации выглядят обещающе [Bellenoue et al., 2007], однако, долгосрочная надежность в практических применениях остается под вопросом. Большая часть этих работ оформлена как изобретения и запатентованы.

Механизмы ускорения горения под действием неравновесной плазмы активно дискутируются в публикациях: генерация атомарного кислорода и других химических радикалов [Fridman, 2008; Napartovich et al., 2005]; наработка молекул синглетного дельта-кислорода $O_2(a1\Delta g)$ [Starikovskaia, 2006; Starik et al., 2010]; цепные ион-молекулярные реакции с промежуточными радикалами [Popov, 2007]. На сегодняшний день большинство исследователей согласны с тем, что основной активной частицей, ответственной за ускорение горения углеводородного топлива в воздухе, является атомарный кислород. В работе [Napartovich et al., 2005] было показано, что наиболее важным источником атомарного кислорода в плазме является диссоциация молекул O_2 в столкновениях с возбужденными молекулами азота и прямой электронный удар. Затем атомы кислорода вступают в быстрые химические реакции с углеводородами. Возможности неравновесного электрического разряда были экспериментально продемонстрированы в условиях тепловых двигателей, например в [Leonov et al., 2007; Correale et al., 2011].

Экспериментальной задачей данной работы является детальное изучение влияния неравновесной плазмы электрического разряда на динамику давления в камере сгорания, концентрационные пределы горения, полноту сгорания топлива, величину выбросов сажи и оксидов азота. Основной задачей моделирования в данной работе является создание модели реактора химического сжатия с учетом плазменной активации топливно-воздушной смеси.

Реализация объемно-распределенного стримерного разряда

Для проверки реализуемости процесса генерации мультистримерного разряда в цилиндре ДВС были выполнены эксперименты в камере высокого давления. Целью исследования являлась оптимизация электродной системы для генерации стримеров в наибольшем объеме и увеличения энерговклада в разряд. Чтобы избежать развития искрового пробоя, который может произвести повреждения конструкции и привести к прежевременному зажиганию смеси в камере сгорания, была предложена самосогласованная схема генерации разряда, при которой не происходит роста напряжения выше некоторого порогового значения для данных условий за счет высокого энерговклада в стримерный разряд. Принципиальная схема источника питания представлена на рисунке 1*а*. Емкость заряжается источником напряжения до величины 7–10 кВ. Синхронизованный разряд емкости производится через первичную обмотку трансформатора. В результате на разрядном промежутке генерируется напряжение до 70 кВ. Разряд генерировался в системе плоскость — мульти-острийный электрод, фотография диэлектрической камеры с электродами показана на рисунке 1*б*.

Рис. 1. Электрическая схема организации разряда — (*a*); фотография электродов в камере — (б): *l* — заземленный электрод, *2* — высоковольтный мульти-острийный электрод

Чтобы осуществить достаточно высокий энерговклад, позволяющий реализовать самосогласованный режим работы разряда, были протестированы различные конфигурации электродов. Варьировалось общее количество остриев и их плотность на единицу площади. Оптимальным оказался электрод в конфигурации прямоугольной сетки с шагом 2 мм между рядами, как видно на рисунке 16. Количество создаваемых стримеров оказалось достаточным для осуществления требуемого энерговклада, при этом электрод по размеру вписывается в цилиндр экспериментального стенда ДВС с прозрачными окнами. Теневая визуализация процесса генерации стримеров в тестовой камере представлена на рисунке 2. Энергия в стримерный разряд вкладывается в каждой полуволне колебательного процесса разряда емкости источника, за счет чего, как видно по заметным градиентам оптической плотности на фотографии, стримерные каналы вносят заметные возмущения в газ. 914 А. А. Фирсов, Ю. И. Исаенков, М. Г. Крупский, В. Ю. Рудаков, Е. А. Филимонова...

Рис. 2. Теневая визуализация мульти-стримерного разряда в воздухе повышенного давления

В ходе проведенных экспериментов была оптимизирована конфигурация электрода, позволяющая, в сочетании с оригинальным источником питания, реализовать самосогласованный процесс генерации стримеров, при котором не происходит искрового пробоя вплоть до напряжений источника 60 кВ при давлении до 2 атм и длине разрядного промежутка 25 мм.

Экспериментальные исследования процессов в двигателях внутреннего сгорания, как правило, ограничены особенностями рассматриваемой установки и возможностями диагностики. В рамках данной работы по исследованию объемного горения в ДВС планируется проведение экспериментов на специальной исследовательской установке «Двигатель с прозрачными окнами» (ДПО), внешней вид которой изображен на рисунке 3*a*. Установка ДПО позволяет одновременно осуществлять как видео и теневую съемку реальных внутрикамерных процессов в ДВС, так и регистрацию его режимных параметров. Вместе с тем анализ термодинамических и кинетических процессов, происходящих в камере сгорания, особенно в присутствие электрического разряда, требует дополнительной информации о таких параметрах, как температура и пространственное распределение топлива по цилиндру, которую сложно получить в эксперименте.

Рис. 3. Экспериментальный стенд (*a*) и геометрия внутреннего пространства (*б*). *1* — система оптической визуализации, *2* — цилиндр ДВС, *3* — оптическое окно с защитой, *4* — электропривод коленвала ДВС

Численное моделирование горения в ДВС

С целью получения распределений газодинамических параметров по объему цилиндра и предварительного изучения режима работы экспериментальной установки при планируемых параметрах эксперимента было проведено численное моделирование горения метана в двигателе при плазменном инициировании процесса горения.

Для выполнения моделирования по имеющимся чертежам и контрольным замерам создана трехмерная компьютерная геометрия цилиндра, клапанов и поршня двигателя. Численное моделирование выполнено в программном комплексе FlowVision 3.09, позволяющем решать задачи внешней и внутренней гидро- и аэродинамики, в том числе с учетом горения и в присутствии подвижных тел. Поток газа описывается нестационарной трехмерной системой уравнений Навье–Стокса, замыкаемой с помощью k-є модели турбулентности. На поверхностях двигателя установлено граничное условие «стенка» без теплообмена и с применением пристенных функций для моделирования пограничного слоя. На входе и выходе задано полное давление относительно атмосферного $P_{\text{вх}}$ = +1000 Па и $P_{\text{вых}}$ = 0 Па, и температура газа T = 290 К. Во время открытия впускного клапана во входящий поток воздуха подается метан в течение 0.025 с. Расход метана составляет 1 г/с при температуре 290 К. Компьютерная модель двигателя и расстановка граничных условий показаны на рисунке 36. Учитывая симметрию геометрии ДВС, расчет производился только для половины цилиндра. В рамках модернизации установки ДПО были изготовлены поршневые головки с различными вариантами конфигураций камеры сгорания. Одна из таких сменных головок включена в геометрию для моделирования: в показанной на рисунке 36 выемке в поршне будет размещен объемно-распределенный разряд для поджига метано-воздушной смеси.

Моделирование движения элементов ДВС. Перемещение подвижных тел во FlowVision описывается с помощью зависимости скорости от времени, которые в данном случае были заданы для клапанов и поршня. Поперечное сечение, ход поршня и частота вращения вала составили 130×50 мм, 130 мм и 600 об./мин. соответственно. Количество оборотов коленвала в эксперименте обусловлено характеристикой используемого электродвигателя, который приводит в движение поршень и клапаны ДВС. Двигатель обладает достаточно длинным шатуном для того, чтобы моделировать движение поршня с помощью синусоидального закона. Ход клапанов был проверен с помощью контрольных измерений, после чего была снята экспериментальная зависимость положения клапанов от угла поворота вала. Это позволило использовать в моделировании реальную функцию изменения скорости движения клапанов от времени.

Модель горения: брутто-реакция. Всего в расчете участвует 5 компонентов, плотность которых определяется по закону идеального газа, а для остальных величин заданы табличные зависимости от температуры и давления. Воздух моделируется как смесь N_2 и O_2 , массовая доля последнего во входящем потоке составляет 0.235. Процесс горения метана с кислородом рассматривается как одна брутто-реакция

$$O_2 + CH_4 \rightarrow CO_2 + H_2O_2$$

при этом скорость химического преобразования определяется с помощью модели «Eddy Dissipation Concept». Данная модель предполагает, что реакция горения протекает в узких ламинарных зонах между турбулентными вихрями. Концентрации горючего в этих зонах, частично заполняющих расчётную ячейку, отличаются от своих средних (по объёму ячейки) значений. Они определяются из условия равенства скоростей турбулентной диффузии и ламинарного горения и, в свою очередь, определяют температуру и плотность «тонких структур» в ячейке. Поэтому необходимо аккуратно задавать параметры для закона Аррениуса, определяющего скорость ламинарного горения:

$$W = A \cdot \exp(-E/RT) \cdot \rho^2 \cdot M_{CH_4} M_{O_2}^{b}$$

Рис. 4. Распределение температуры в горелке Бунзена

коэффициенты *A*, *E*, *a*, *b*, а также пределы воспламенения по избытку окислителя были предварительно подобраны при моделировании пламени ламинарной горелки Бунзена. Моделирование горелки Бунзена проводилось для тонкого сектора осесимметричной горелки с внутренним радиусом 4 мм в двумерной постановке. Адаптация сетки в пакете FlowVision трехмерная, что делает её использование в двумерных задачах крайне невыгодным. Поэтому для создания экономичной двумерной расчетной сетки использовалась специальная методика, описанная в работе [Фирсов, Москалев, 2013], которая позволяет получать двумерную сетку при использовании трехмерной локальной адаптации.

При подборе коэффициентов *a* и *b* учтен результат работы [Westbrook, Dryer, 1981], в которой показано, что наилучшее совпадение скорости ламинарного пламени с экспериментальным значением достигается в моделировании, когда $a \ll b$, и представлены наборы констант для различных углеводородных топлив. Угол конуса пламени в горелке составил 23°, что при скорости потока 1 м/с соответствует скорости распространения ламинарного пламени 0.39 м/с для стехиометрической смеси [Vagelopoulos, Egolfopoulos, 1998]. Поле температур для горелки Бунзена, полученное в расчете, показано на рисунке 4. Однако, требуется проведение дополнительного исследования, охватывающего как бедные, так и богатые смеси, с учетом выявленных особенностей используемого пакета численного моделирования.

Модель разрядного воздействия. Воспламенение смеси в ДВС осуществляется с помощью объемного источника тепла, имитирующего плазму электрического разряда. Подобный подход ранее успешно применялся при решении различных задач, таких как исследование распада послеразрядного канала в неподвижном воздухе [Шурупов М.А. и др., 2014] и управление сверхзвуковым потоком с помощью разряда [Leonov et al., 2011].

Рис. 5. Теневой снимок разветвленного разряда (*a*) [Шурупов М.А. и др., 2014], и геометрия источника тепла (б)

Геометрия источника тепла, показанная на рисунке 56, основана на теневом снимке стримерной фазы разветвленного разряда (см. рис. 5а). Изначально планировалось, что разряд будет создаваться с помощью одного острия. Но такой тип разряда оказалось сложно реализовать при высоком давлении. Поэтому был предложен вариант, в котором высоковольтный электрод имеет большое количество остриев (см. рис. 2). Однако проведенная замена геометрии в экспериментальных исследованиях не меняет основной концепции — воздействие стримерного разряда на большой объем смеси. Длительность работы источника тепла составляет 10 мкс, а энергия равна 1 Дж. Воспламенение производится за 8 градусов до верхней мертвой точки (ВМТ). В области источника тепла перед его включением выполняется локальная адаптация расчетной сетки из-за малого диаметра ветвей геометрии источника, в результате чего разрешение в области разряда достигает 35 ячеек на 10 мм. Во время движения тела требуется локальное автоматическое перестроение сетки каждый расчетный шаг, что требует дополнительных вычислительных ресурсов по сравнению с обычным газодинамическим расчетом. В ходе решения задачи объем расчетной сетки достигал 1.5 млн ячеек. Расчет выполнялся в параллельном режиме на рабочей станции, оснащенной 6-ти ядерным процессором Intel Core i7 с 16 ГБ оперативной памяти.

Основные результаты расчета. В каждом цикле моделирования были просчитаны 2.5 цикла работы ДВС. В расчете подача метана начинается до открытия впускного клапана, поэтому вычисления проводились, начиная с третьего такта (рабочего хода) нулевого цикла. Для этого в качестве начальных условий в цилиндре были заданы температура и давление, соответствующие параметрам невоспламенившейся смеси в верхней мертвой точке. После неполного нулевого цикла считался полный первый цикл без поджига, а затем полный второй цикл с принудительным воспламенением смеси с помощью объемного (неоднородного) источника тепла. Динамика давления и температуры в цилиндре для первого и второго циклов показана на рисунке 6. Анализируя полученные зависимости, необходимо отметить, что фронт пламени, инициированный источником тепла, достаточно плавно распространяется по объему цилиндра. Воспламенение не сопровождалось переходом в детонационный режим горения, который часто возникает в аналогичных условиях при использовании традиционного искрового разряда с сопутствующей ударной волной. Пространственное расположение области, в которой идет химическая реакция, для двух моментов времени показано на рисунке 7. Распределение давления, показанное на рисунке 6, свидетельствует о достаточно позднем зажигании смеси в значительной части объема. Полученные данные о поле скоростей и динамике распространения пламени позволяют предположить, что использование более широкой камеры сгорания с плоским многоострийным электродом позволит увеличить зону первоначального воспламенения и уменьшить время распространения пламени по всему объему. Параллельно может потребоваться изменение момента поджига на более ранний момент времени. С точки зрения организации распространения стримерного разряда это может снизить требования на амплитуду высоковольтного импульса, т. к. сдвиг момента поджига вперед означает работу при меньшем давлении в момент включения электрической схемы.

Рис. 6. Динамика давления и температуры в цилиндре

Полученные в результате расчета параметры потока позволяют сделать необходимые коррективы момента времени и длительности впрыска топлива. В ходе расчета было определено, что после второго цикла, в ходе которого происходит выгорание смеси, следующее наполнение цилиндра новой смесью сопряжено с определенными сложностями. Стандартный режим работы ДПО включает в себя циклы без топлива, затем 2–3 цикла с топливом (без горения), после чего следуют 2–3 рабочих цикла с принудительным воспламенением смеси. Выполненное моделирование позволяет скорректировать количество топлива, подаваемое во втором и третьем рабочем цикле в эксперименте во время наполнения свежей смесью, учитывая состав газа в объеме цилиндра, включающий в себя значительное количество продуктов сгорания, оставшихся после предыдущего цикла. Описанный сценарий позволит в ходе всех трех рабочих циклов выдерживать приблизительно одинаковый коэффициент избытка топлива.

Рис. 7. Движение фронта пламени по объему цилиндра. Угол поворота вала — 396 и 432 градуса соответственно. Показано распределение температуры в объеме и векторы скорости. Скорость движения газа не превышает 9 м/с.

В момент открытия впускного клапана газ в цилиндре остается достаточно горячим, что может привести к воспламенению смеси во впускном тракте. Необходимость сдвинуть момент подачи топлива ближе к середине такта впуска конкурирует с безопасностью работы ДВС: нельзя подавать топливо в конце такта, т. к. часть его окажется во впускном тракте в области клапана в момент его закрытия, и при следующем открытии эта часть смеси может воспламениться. Средний коэффициент избытка топлива оказался несколько выше планируемого и составил во втором цикле 0.85. В целом топливо распределяется по объему цилиндра весьма неравномерно, как это можно видеть на рисунке 8. Таким образом, коррективы, сделанные по результатам расчета, позволяют избежать аварийных ситуаций в ходе эксперимента, а также дают возможность оптимизировать систему стримерного воспламенения смеси еще до проведения первого полного цикла экспериментов на установке ДПО.

Рис. 8. Визуализация результатов расчета. Коэффициент избытка окислителя во время такта впуска и векторы скорости для впускного тракта

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ

Кинетический подход в модели горения. Создание редуцированной кинетической схемы

Создание модели реактора химического сжатия (аналог ДВС) с внешним разрядным воздействием на процесс горения требует кинетического подхода к описанию химических процессов. В отличие от использования одной брутто-реакции такой подход позволит представить воздействие разряда не только как источника тепла, но и как источник неравновесного воздействия для создания в ограниченном объеме (канале разряда) повышенной концентрации активных частиц, таких как атомы О, Н, возбужденные молекулы $N_2(A,B,C)$, углеводородные радикалы типа CH₃, C₂H₅, C₃H₇ и др. Однако, совместное решение уравнений гидродинамики и химической кинетики в случае 2D и 3D расчетов требует значительных затрат машинного времени. Поэтому для сокращения времени счета необходимо создавать редуцированные кинетические схемы с ограниченным набором компонентов и реакций.

Для создания редуцированной схемы была использована методика, изложенная в работах [Амиров, 1997; Железняк, Филимонова, 1998], ранее применявшаяся аторами для других задач. По этой методике отбор происходит по следующему критерию: во-первых, учитываются только те компоненты, концентрация которых за время счета была больше некоторой изначально заданной минимальной величины n_{min} ; во-вторых, учитываются те реакции, интегральный вклад которых за время счета больше некоторой изначально заданной минимальной величины n_{min} ; во-вторых, учитываются те реакции, интегральный вклад которых за время счета больше некоторой, заранее заданной величины, т. е. ($|Q_f| + |Q_{bj}|$) > $\varepsilon \cdot (|Q_f| + |Q_b|)$ для каждого компонента, j — номер реакции, Q_f — суммарная скорость наработки *i*-го компонента в прямых реакциях, Q_b — суммарная скорость убыли *i*-го компонента в обратных реакциях. Величина $\varepsilon = 0.1, 0.01, 0.001$ и т. д.

В результате из полной системы, состоящей из 103 компонентов и 694 реакций (сумма прямых и обратных), описывающих воспламенение углеводородов (CH₄, C₂H₄, C₂H₆, C₃H₈, CH₃CHO) в воздухе [Bityurin et al., 2009; Гордин и др., 2013], для смеси CH₄:O₂ было отобрано два набора реакций: 1) 400 реакций и 61 компонент и 2) 126 реакций с участием 28 компонентов. Критерии отбора для первого набора были жесткие: $\varepsilon = 0.001$, $n_{\min} = 10^3$ см⁻³, для второго набора — $\varepsilon = 0.01$, $n_{\min} = 10^{13}$ см⁻³. При увеличении ε и n_{\min} сокращается число реакций и компонентов. Таким образом, для каждой задачи (горючей смеси) и заданных требований точности можно создать свою редуцированную схему.

На рисунках 9 и 10 приведены диаграммы ведущих реакций для атома О для двух редуцированных схем в момент времени, близкий к воспламенению (при температуре T= 3000 K). Каждая диаграмма имеет разделительную линию, на которой показан знак временной производной для концентрации. Выше и ниже этой линии дан перечень ведущих реакций, приводящих соответственно к наработке и убыли рассматриваемого компонента. Стрелка в записи реакции указывает направление процесса. Реакции расположены в порядке убывания их интегрального вклада (крайняя правая колонка в см⁻³). В конце разделительной линии указан интегральный вклад всех реакций. Цифры в центральной части диаграммы соответствуют рейтингу реакции для каждого момента времени (от 1 до 9 и меньше (*)). Черточка означает, что рейтинг тот же, что и в предыдущий момент времени, отсутствие любого знака соответствует низкому рейтингу. В расчетах получаются более полные списки реакций, которые не приводятся из-за их меньшего вклада в процесс. В нижней части дается временная шкала, а в верхней части — концентрация компонента в соответствующий момент времени. Диаграммы строятся для требуемых временных интервалов, т. к. для определенных реакций есть характерное время действия (например, реакции с заряженными частицами, или, как в рассматриваемом случае — момент воспламенения, или наработка NO, когда давление и температура соответствуют равновесному состоянию после воспламенения). По данным, представленным на рисунках 9 и 10, видно, что изменение полной концентрации и суммарной наработки отличаются незначительно, наработка и убыль в отдельных реакциях отличаются во втором-третьем знаке для заданных условий.

На рисунке 11 приведены зависимости температуры и концентрации атомов О для полной системы реакций (103 компонента и 694 реакций) и для двух редуцированных схем. Время

Con	centration	.31E+11 .18E+13 .16E+15 .39E+16 .39E+17 .13E	+18	
4	02+M=>0+0+M	3	.751E+13	
6	H+HO2=>O+H2O	6	.421E+16	
19	O+CH4<=OH+CH3	45	.474E+16	
237	CO2+M=>O+CO+M	744	.446E+17	
23	02+CH3=>0+CH30	2345	.455E+17	
3	0+H2<=OH+H	5433	.136E+19	
2	0+0H<=H+02	122	.414E+19	
52	OH+OH=>O+H2O	321	.101E+20	
	-Sign dn/dt	+++++++++++++++++++++++++++++++++	.13E+18	
52	OH+OH<=O+H2O	651	104E+20	
2	O+OH=>H+O2	67-89-*-97-22	346E+19	
3	0+H2=>OH+H	8-7-63	128E+19	
19	O+CH4=>OH+CH3	1345	162E+18	
70	0+CH3=>H+CH2O	24-	121E+18	
225	O+C2H2=>H+CHCO	4-3456	516E+17	
37	O+C2H2=>CO+CH2	5-4567	492E+17	
226	O+CHCO=>H+CO+CO	*-97-8-9	110E+17	
63	O+CH2O=>CHO+OH	9-89-8	981E+16	
23	02+CH3<=0+CH30	35-67-9*-*	509E+16	
76	O+CH=>H+CO	**5	419E+16	
68	O+CH2=>H+CHO	*-**	378E+10	
		-1098765.		
		log10(t)		

Рис. 9. Диаграмма ведущих реакций для атома О в процессе воспламенения. Редуцированная схема I: 61 компонент и 400 реакций

Рис. 10. Диаграмма ведущих реакций для атома О в процессе воспламенения. Редуцированная схема II: 28 компонентов и 126 реакций.

индукции, динамика температуры и концентрации атомов О для полной схемы и схемы I практически совпадают. Поэтому приведены кривые только для полной схемы. Для редуцированной схемы II отличие заметно, но, с точки зрения использования ее в гидродинамическом коде, вполне допустимо. Время индукции отличается по сравнению с полной схемой на 10 % (1.35 и 1.5 мс), равновесная температура (T_{eq} = 2973 К и 2837 К) отличается на 4.6 %, концентрации атомов О при выходе на равновесие отличаются на 10 % (0.072 и 0.079), атомов Н — на 12 % (0.097 и 0.11), радикалов ОН — на 4.6 % (0.114 и 0.109), соответственно для схемы I и схемы II.

Особенностью полной схемы и схемы I является то, что они включают низкотемпературную стадию воспламенения (стадия возникновения холодных и голубых пламен). Из 400 реакций редуцированной схемы I — 40 реакций имеют важное значение при T = 600-1000 K. В схеме II число реакций, описывающих низкотемпературное окисление, заметно уменьшилось, что привело к увеличению времени индукции. Уменьшение числа участвующих в процессе углеводородов увеличило концентрацию атомов H. По этой же причине в схеме мало продуктов окисления, поэтому концентрация атомов O тоже заметно больше (иначе атомы O были бы в продуктах окисления), чем в расчетах по полной схеме.

КОМПЬЮТЕРНЫЕ ИССЛЕДОВАНИЯ И МОДЕЛИРОВАНИЕ _

Рис. 11. Сравнение динамики температуры и концентраций атомов О для полной и двух редуцированных схем. Полная схема — 103 компонента и 694 реакции (сумма прямых и обратных), редуцированная схема I — 61 компонент и 400 реакций, редуцированная схема II — 28 компонентов и 126 реакций

Анализ расчетов по схеме II показывает, что она правильно описывает процесс воспламенения с учетом всех оговорок по сокращению числа участвующих компонентов. Поэтому предложенная схема может быть включена в газодинамическую 2D или 3D компьютерную программу для решения задач горения, требующих аккуратного учета времени индукции.

Заключение

Химические реакторы сжатия используются для непосредственного изучения процесса низкотемпературного воспламенения с точки зрения кинетических реакций при повышенных температуре и давлении. Важнейшим кинетическим явлением в этом случае является многостадийность зажигания и горения. Практической задачей, стимулирующей изучение многостадийного воспламенения, является уменьшение концентрации оксидов азота и наносажи в выхлопе двигателя внутреннего сгорания. Одно из решений — использовать бедные топливновоздушные смеси. Однако такие смеси трудно поджечь, и их горение носит нестабильный характер. Одним из практических способов реализации наиболее выгодного сценария, с точки зрения устойчивого горения в условиях бедных смесей, является неравновесное химическое возбуждение компонент при помощи высоковольтного электрического разряда.

В данной работе изложен комплексный подход к решению задачи: численный анализ газодинамических процессов в цилиндре двигателя внутреннего сгорания, анализ применимости редуцированной кинетической схемы для моделирования неравновесного зажигания и горения, а также проведение экспериментальной демонстрации устойчивого воспламенения топливновоздушной смеси в условиях дизельного цикла. В статье приведено описание результатов, полученных на первой стадии исследовательской работы, в том числе: параметров оригинальной электроразрядной системы для генерации объемно-стримерного разряда, численного 3D моделирования работы ДВС с учетом тепловыделения посредством модели брутто-реакции, сравнения двух редуцированных схем воспламенения с точки зрения времени индукции, наработки радикалов и равновесной температуры.

Список литературы

Амиров Р. Х., Железняк М. Б., Филимонова Е. А. Моделирование процессов очистки в дымовых газах, инициируемых периодическим коронным разрядом. Препринт №1–403. — Москва, 1997. — 63 с.

- Гордин К. А., Масленников В. М., Филимонова Е. А. Оценка уровня эмиссии оксидов азота при подаче пара с природным газом в камеру сгорания газотурбинной установки // ТВТ. 2013. Т. 51, № 6. С. 937–944.
- Железняк М. Б., Филимонова Е. А. Моделирование газофазного химического реактора на основе импульсного стримерного разряда для удаления токсичных примесей // ТВТ. 1998. Т. 36, № 3. С. 374–379. №. 4. С. 557–564.
- Фирсов А. А., Москалев И. В. Создание двухмерной расчетной сетки в программном комплексе FlowVision с использованием адаптации // Инженерные системы 2013: труды международного форума. 15–16 апреля 2013. Москва. С. 65–69.
- Шурупов М. А., Леонов С. Б., Фирсов А. А., Яранцев Д. А., Исаенков Ю. И. Газодинамические неустойчивости при распаде канала субмикросекундного искрового разряда // ТВТ. 2014. Т. 52, № 2. С. 186–197.
- *Bellenoue M., Labuda S., Ruttun B., Sotton J.* Spark plug and corona abilities to ignite stoichiometric and lean methane/air mixtures // Combust. Sci. and Tech. 2007. Vol. 179, No. 3. P. 477–496.
- *Bityurin V.A., Bocharov A. N., Filimonova E. A.* About low temperature inflammation of propane and acetaldehyde under assisted combustion // 8th Inter. Workshop on Magnetoplasma aerodynamics. Mach 31–April 2 2009. Moscow. Russia. P. 101–106.
- Correale G., Rakitin A., Nikipelov A., Pancheshnyi S. et al. Non-Equilibrium Plasma Ignition for Internal Combustion Engines // SAE Technical Paper. 2011. Paper 2011-24-0090.
- *Egolfopoulos F. N., Holley A. T., Law C.*. An assessment of the lean flammability limits of CH4/air and C3H8/air mixtures at engine-like conditions // Proceedings of the Combustion Institute. 2007. Vol. 31, No. 2. P. 3015–3022.
- Fridman A. Plasma Chemistry. Cambridge University Press, 2008.
- Joshi S., Loccisano F., Yalin A. P., Montgomery D. T. On comparative performance testing of prechamber and open chamber laser ignition // J. Eng. Gas Turbines Power. 2011. Vol. 133, No. 12. Paper 122801.
- Leonov S. B., Firsov A. A., Yarantsev D. A. et al. Plasma Effect on Shocks Configuration in Compression Ramp // AIAA paper 2011–2362.
- *Leonov S. B., Yarantsev D. A.* Plasma-induced ignition and plasma-assisted combustion in high-speed flow // Plasma Sources Sci. Technol. 2007. Vol. 16, No. 1. P. 132–139.
- *MacKeand J. C. B.* Sparks and Flames: Ignition in Engines: An Historical Approach. Tyndar Press, 1997. 168 p.
- Napartovich A. P., Kochetov I. V., Leonov S. B. Calculation of the dynamics of ignition of an airhydrogen mixture by nonequilibrium discharge in a high-velocity flow // High Temperature. — 2005. — Vol. 43, No. 5. — P. 673–679.
- Will the plasma torch spark off a revolution in car ignition? // New Scientist. Jan 9, 1975. P. 77.
- *Popov N. A.* The effect of nonequilibrium excitation on the ignition of hydrogen-oxygen mixtures // High Temperature. 2007. Vol. 45, No. 2. P. 261–279.
- Starik A. M., Kozlov V. E., Titova N. S. On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture // Combustion and Flame. — 2010. — Vol. 157, No. 2. — P. 313–327.
- Starikovskaia S. M. Plasma assisted ignition and combustion // J. Phys.D: Applied Physics. 2006. Vol. 39. P. 265–299.
- *Vagelopoulos C. M., Egolfopoulos F. N.* Direct Experimental Determination of Laminar Flame Speeds // Proceedings of the Combustion Institute. 1998. Vol. 27. P. 513–519.
- Westbrook C. K., Dryer F. L. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames // Combustion Science and Technology. 1981. Vol. 27. P. 31–43.