# РАЗРАБОТКА ВОЗДУШНОГО ТРАКТА ДЛЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ВЕРТОЛЕТА С ИСПОЛЬЗОВАНИЕМ FLOWVISION

# Т.Д. Глушков<sup>1,2,а</sup>, В.В. Митрофович<sup>2,b</sup>, С.А. Сустин<sup>2,c</sup>

<sup>1</sup> Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)»,г. Москва, Россия <sup>2</sup> Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского, г. Жуковский, Россия

Рассматривается процесс разработки воздушного тракта системы охлаждения. Производится оценка взаимодействия вентилятора и отводящего диффузора с использованием FlowVision. Полученные результаты сравниваются с экспериментальными данными.

## Введение

Основная задача систем охлаждения вертолетов состоит в обеспечении расхода воздуха через теплообменники, которые соединены с маслосистемами двигателя и главного редуктора. Кроме теплообменников обычно охлаждаются генераторы и другие агрегаты, организуется вентиляция подкапотного пространства.

В большинстве случаев система охлаждения состоит из теплообменников, вентилятора и каналов, обеспечивающих подвод и отвод воздуха к агрегатам, а также выброс горячего воздуха за пределы подкапотного пространства вертолета.

В настоящее время при проектировании таких систем необходим переход к компактным воздушным трактам, которые обеспечивают заданные требования. Однако использование вентиляторов с такими каналами может привести к значительным потерям полного давления, что отрицательно скажется на потребляемой мощности и КПД установки в целом.

Вентилятор должен обеспечивать заданную величину расхода воздуха G [кг/с], которая непосредственно связана с величиной теплосъема. При этом вся система каналов и вентилятора должна иметь минимальные размеры и высокую эффективность при ограниченной частоте оборотов вентилятора n [об/мин].

На многих вертолетах, в качестве каналов обычно используются большие диффузоры с вентилятором, который состоит из рабочего колеса и спрямляющего аппарата. Такие диффузоры хорошо изучены при взаимодействии с простым незакрученным потоком. Однако закрученные течения, которые образуются за вентилятором без спрямляющего аппарата, могут сильно влиять на характеристики всей системы.

Кроме того, геометрия каналов должна быть увязана с компоновкой всей машины в целом. Последнее обстоятельство довольно часто является решающим при выборе конструкции схем подвода воздуха к потребителям и его отвода.

Известно, что по мере уменьшения расстояния до преграды потери в осерадиальном переходе между вентилятором и препятствием быстро увеличиваются и, соответственно, уменьшается энергетическая эффективность вентиляторной установки [Сустин, 2013]. Это обстоятельство заставляет разработчиков значительно увеличивать габариты вентиляторной установки для сохранения приемлемого уровня её экономичности, что приводит к значительным трудностям в компоновке воздухоперемещающей системы на летательном аппарате.

# Постановка задачи

Анализируя подкапотное пространство вертолета, и учитывая габариты теплообменника, было выбрано оптимальное положение установки и ее максимальные размеры.

Были проанализированы варианты с размещением теплообменника и другими элементами тракта на выходе за вентилятором и на входе в него. Были рассмотрены радиальные вентиляторы и различные схемы осевых вентиляторов (рабочее колесо + спрямляющий аппарат (K+CA), K+CA + диффузор, рабочее колесо с плоским экраном за ним) [Брусиловский, 1984]. Наилучшим по совокупности параметров оказался вентилятор с диффузором, реализующий боковой выброс горячего воздуха, при этом теплообменник располагается перед вентилятором. Для соединения теплообменника с вентилятором используется переходный коллектор. Положение теплообменника и зависящего от него коллектора выбирается исходя из конструктивных соображений.

#### Вентиляторная установка с экраном

Для формирования воздушного тракта за вентилятором были использованы результаты исследований вентиляторной установки с близко расположенным экраном [Сустин, 2013]. Согласно этим результатам коэффициент статического давления  $\psi_s$ , развиваемый такой установкой может быть выше, чем у вентилятора со свободным выходом (рис. 1), при небольших коэффициентах расхода  $\varphi$ . Коэффициент статического давления определяется как  $\psi_s=2P_s/(\rho u^2)$ , а коэффициент расхода  $\varphi=Q/(Fu)$ , где  $P_s$  – разница статических давлений перед и за вентилятором, Q – объемный расход, F – площадь вентилятора, u – окружная скорость вращения лопаток рабочего колеса [Брусиловский и др. 1984].



Рис. 1 – Характеристики вентиляторных установок: с экраном (экр) и со свободным выходом.

Потери давления  $\zeta = 2\Delta P/(\rho u^2)$  зависят от интенсивности закрутки за вентилятором, и относительного осевого расстояния до экрана, которое определяется как  $\overline{L} = L/D_3$ . Интенсивность закрутки обычно характеризуется числом Россби, определяемым как отношение потока момента количества движения к произведению потока импульса в осевом направлении на радиус струи [Гупта и др., 1987]. Здесь используется параметр  $S_I = 1/$  Ro, обратный критерию Россби. Для вентилятора параметр  $S_I$  может быть выражен непосредственно через расчетные параметры вентилятора как  $S_I = \varphi/\psi_T$ , где  $\psi_T = \psi_S/\eta_S$  – коэффициент теоретического давления. На основе этих данных, а также требованиям к расходу вентилятора выбирается оптимальное расстояние до экрана  $\overline{L}$ .



*Рис.* 2 – Зависимость потерь давления  $\zeta$  от закрутки  $S_1$  и расстояния до экрана  $\overline{L}$ .

На основе всего вышеизложенного была сформирована приближенная геометрия сложного отводящего устройства (рис. 4, *г*). Характеристики такого канала определить аналитически или используя уже имеющиеся данные по диффузорам [Идельчик, 1992] очень трудно, а в большинстве случаев невозможно. Даже если учесть, что в основе этого воздушного тракта лежит изученная вентиляторная установка с экраном, необходима оценка влияния боковых стенок и нарушения осевой симметрии.

Для определения характеристик этой компоновки применяется программный комплекс FlowVision. Предварительно была отработана методика численного моделирования закрученных течений в вентиляторной установке с плоским экраном.

## Методика численного моделирования

Для упрощения математической модели вентилятор заменялся граничным условием «входа» где задавалось распределение скоростей за рабочим колесом (рис. 3, *a*).

Эти скорости были получены экспериментально и могут использоваться для расчета моделей различных каналов за вентилятором, поскольку распределение скоростей практически не изменяется в зависимости от наличия препятствий за вентилятором [Сустин, 2013].

Были рассмотрены несколько вариантов комбинаций пристеночных и объемных адаптаций. Наилучшей оказалась сетка, в которой основная объемная адаптация находится в области между вентилятором и экраном, имеет 4й уровень, а пристеночная 5й. Для определения минимального количества ячеек расчетной сетки были построены 4 модели, имеющих  $0,3x10^6$ ,  $0,6x10^6$ ,  $0,9x10^6$  и  $1,2x10^6$  ячеек. Количество ячеек управлялось размерами базовой сетки. Было определено, что в такой постановке минимальное количество ячеек составляет  $0,6x10^6$ , в дальнейших расчетах использовалась именно такая сетка (рис. 3,  $\delta$ ). Во всех расчетах применялась модель турбулентности *SST*.



Рис. 3 – Схема граничных условий (а) и расчетная сетка (б)

|                |                   |         |                             |         | <b>1</b>                    |         |
|----------------|-------------------|---------|-----------------------------|---------|-----------------------------|---------|
|                | Потери давления ζ |         |                             |         |                             |         |
| $\overline{L}$ | $S_1 = 03$        |         | <i>S</i> <sub>1</sub> =0,35 |         | <i>S</i> <sub>1</sub> =0,45 |         |
|                | расчет            | эксп.   | расчет                      | эксп.   | расчет                      | эксп.   |
| 0,09           | 0,8136            | 0,85199 | 0,9213                      | 0,93134 | 1,1                         | 1,09546 |
| 0,11857        | 0,5267            | 0,54205 | 0,56535                     | 0,58419 | 0,7215                      | 0,69904 |
| 0,13286        | 0,56091           | 0,55798 |                             | 0,63529 |                             | 0,78334 |
| 0,14714        | 0,6156            | 0,61056 |                             | 0,70029 | 0,888                       | 0,86624 |
| 0,17571        | 0,7023            | 0,7111  |                             | 0,81519 |                             | 0,94599 |
| 0,20429        | 0,73              | 0,82279 |                             | 0,8797  |                             | 0,99532 |
| 0,25429        | 0,7424            | 0,83458 | 0,7985                      | 0,87486 | 0,8577                      | 0,96753 |

#### Таблица 1. Сравнение результатов расчета и эксперимента

Можно отметить хорошее количественное совпадение результатов в диапазоне изменения параметра  $\overline{L} = 0,09-0,18$  (табл. 1). Для осевых расстояний  $\overline{L} \ge 0,18$  расхождение количественного совпадения с экспериментом, можно объяснить отрывным течением, возникающим в осерадиальном канале.

#### Моделирование течения в воздушном тракте системы охлаждения

Аналогичный подход использовался для системы охлаждения. Для оптимизации устройства были построены различные варианты (рис. 4): вариант канала с плавной стенкой (a), модели с уменьшенным ( $\delta$ ) и увеличенным выходным сечением (s), модель с уменьшенной боковой стенкой (z), а также базовый канал (d).

В процессе создания расчетной сетки расстановка адаптаций и базовая сетка во всех моделях были одинаковыми. Количество расчетных ячеек составляло более 10<sup>6</sup>, это число зависело только от геометрии. При этом количество узлов между торцевым диском и верхней стенкой канала оставалось таким же, как и в моделях вентиляторной установки с экраном (рис. 3).



Рис. 4 – модели каналов за вентилятором: a) – с плавной боковой стенкой, б) – с уменьшенным выходом, в) – с увеличенным выходом, г) – с уменьшенной боковой стенкой, д) – базовый вариант



Рис. 5 – Картина течения в каналах

На рис. 5 приведен анализ течения который показал следующее: в модели с плавной стенкой возникает небольшое поджатие потока, возникает небольшой рост потерь, по сравнению с базовой моделью. В моделях с уменьшенным выходным сечением (в) и уменьшенной боковой стенкой также происходит поджатие, вследствие чего растут потери давления. Модель с увеличенным выходным сечением (а) является демонстрационной. Она показывает, что с увеличением области, в которой наблюдаются наибольшие значения скорости, происходит снижение потерь давления. Однако такая компоновка не может быть использована, поскольку она не удовлетворяет геометрическим ограничениям.

Базовая модель ( $\delta$ ) является оптимальной по геометрическим параметрам, к тому же она обладает лучшими характеристиками. Незначительное поджатие вблизи выступающего участка не значительно влияет на работу всей системы в целом.

Потери давления в рассматриваемом воздушном тракте за вентилятором близки к значению потерь вентиляторной установки с экраном. На основе этих данных определялись статический КПД  $\eta_s$  и коэффициент статического давления  $\psi_s$ . Полученные значения сравнивались с результатами дальнейших экспериментальных исследований (рис. 6).

#### Экспериментальные исследования

Для экспериментального исследования вентиляторной установки была изготовлена крупномасштабная модель воздушного тракта, с вентилятором, рассчитанным для рассматриваемой системы охлаждения, диаметр которого составлял 700 мм. Частота оборотов n равнялась  $10^3$  об/мин. При таких параметрах окружная скорость u т.е. скорость движения концевых сечений лопаток составляла 36,65 м/с.

В ходе испытаний определялись аэродинамические характеристики вентиляторной установки, согласно ГОСТ 10921. Были получены зависимости статического КПД  $\eta_s$  и коэффициента статического давления  $\psi_s$  от коэффициента производительности  $\phi$  (рис. 6). Можно видеть, что разработанная установка удовлетворяет поставленным требованиям, и имеет значительный запас до срыва, а также позволяет преодолеть сопротивление теплообменника даже при пониженном расходе воздуха.



Рис. 6 – Экспериментальные характеристики системы

Результаты расчета в программном комплексе FlowVision хорошо согласуются с результатами эксперимента. Получен инструмент позволяющий провести оценку величины ожидаемых потерь полного давления в осерадиальных диффузорах простой и сложной конфигурации. Из этого следует, что численное моделирование применимо для решения задач с габаритными ограничениями.

# Список литературы

Брусилосвский И.В. Аэродинамика осевых вентиляторов – М., 1984.

Гупта А., Лилли Д., Сайред Н. Закрученные потоки., пер. с англ. – М.: Мир, 1987. – С. 19–24.

Идельчик Справочник по гидравлическим сопротивлениям – М., 1992.

Сустин С.А. Повышение эффективности осевых ступеней, работающих в стесненных условиях // Компрессорная техника №9, – 2013. – с. 112–117