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Ensemble-averaged statistics at constant phase of the turbulent near-wake flow
(Reynolds number =~ 21400) around a square cylinder have been obtained from
two-component laser-Doppler measurements. Phase was defined with reference to a
signal taken from a pressure sensor located at the midpoint of a cylinder sidewall.
The distinction is drawn between the near wake where the shed vortices are ‘mature’
and distinct and a base region where the vortices grow to maturity and are then
shed. Differences in length and velocity scales and vortex celerities between the flow
around a square cylinder and the more frequently studied flow around a circular
cylinder are discussed. Scaling arguments based on the circulation discharged into
the near wake are proposed to explain the differences. The relationship between
flow topology and turbulence is also considered with vorticity saddles and streamline
saddles being distinguished. While general agreement with previous studies of flow
around a circular cylinder is found with regard to essential flow features in the near
wake, some previously overlooked details are highlighted, e.g. the possibility of high
Reynolds shear stresses in regions of peak vorticity, or asymmetries near the stream-
line saddle. The base region is examined in more detail than in previous studies, and
vorticity saddles, zero-vorticity points, and streamline saddles are observed to differ
in importance at different stages of the shedding process.

1. Introduction

The turbulent flow around a square cylinder (a definition sketch is given in figure 1a)
has received far less attention than the flow around a circular cylinder. The topology
of both flow fields is expected to be identical, but differences in length and velocity
scales provide insight into the relationship between ‘coherent’ vortex structures and
‘incoherent’ (or ‘random’) turbulence characteristics. Features that are less apparent
in the case of the circular geometry may be accentuated in the case of the square
geometry. Studies of the ensemble- or phase-averaged statistics of wake flows have
focused on the region, to be termed loosely the near wake, in which the individual
vortex structures are clearly apparent and the turbulent vortex street is fully developed.
The wake flow closer to the cylinder, within the first four diameters, has been less
studied. This region, loosely termed here the base region, exhibits high levels of
mixing, e.g. & 60% of the circulation discharged into the wake on one side of the
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(a) (b) Streamline
separatrices

FIGure 1. (a) Definition sketch of flow around a square cylinder, (b) sketch of streamlines of the
Karman vortex street seen from a reference frame moving with the vortices (adapted from Perry,
Chong & Lim 1982): C - centres, S — saddles.

circular cylinder is lost within this region (Cantwell & Coles 1983, hereafter to be
referred to as CC). In contrast to the flow pattern in the near wake, which changes
little with phase except for a downstream translation, the flow in the base region
changes substantially during the shedding cycle. Even if the dynamics of the base
region differ from those in the near wake, a study of the former region may still
provide information complementary to a study of the latter, since this region bridges
the region of initial turbulent shear layer development, dealt with in Lyn & Rodi
(1994), and the near wake.

1.1. Conceptual approaches

Because of the large-scale organized motion in the flow field around a bluff body,
the time-varying component in the wake of a bluff-body flow includes a periodic
component that may be distinguished from a residual ‘random’ (‘turbulent’ or ‘inco-
herent’) component. The velocity signal is appropriately analysed in terms of the triple
decomposition of Hussain & Reynolds (1970), where the instantaneous streamwise
velocity is decomposed as

u(t) = (u(p(t))) + (1), (1a)
=u +a+u(t), (1b)

in which (u((t))) is the coherent component computed from the average at constant
phase, ¢(t) is the phase, #/(t) is the turbulent component, @ is the (global) long-time-
averaged velocity, and # is the periodic component with zero mean. Hussain (1983)
gave the relevant flow equations for both coherent and turbulent flow quantities.
Critical-point theory has been exploited in discussions of separated flow patterns
and of flows around bluff bodies (Perry & Fairlie 1974; CC; Perry & Steiner 1987;
Zhou & Antonia 1994). For two-dimensional flows (to which this work is restricted),
two non-degenerate critical (zero velocity or stagnation) points may develop in the
interior of the flow field: (i) centres, characterized by closed streamlines, and (ii)
saddles, characterized by the intersection of streamlines. This distinction may also
be formulated in terms of the local extrema and saddle points of the appropriate
stream-function distribution (see the Appendix). These will be termed here streamline
centres and streamline saddles respectively. Critical points so defined are not Galilean
invariant because they depend on an assumed reference frame velocity. A sketch of
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critical points in an idealized Karman vortex street consisting of point vortices all
moving rectilinearly with the same velocity is shown in figure 1(b). Hussain (1983,
1986) and Hussain & Hayakawa (1987, hereafter referred to as HH) argued for the
perspective of the phase-averaged vorticity distribution, (w(x,y)). The saddle point
of (w(x,y)) (termed vorticity saddle), at which (w(x, y)) attains both a local minimum
and a local maximum simultaneously, was emphasized but was used interchangeably
with the streamline saddle. The vorticity saddle is based directly on a physical
transported quantity and does not depend on a choice of reference frame velocity.
CC suggested that a streamline saddle could be identified as a point at which
(w) = 0, and Hussain (1983, 1986) assumed that a vorticity saddle was characterized
by negligible (w).

Besides characterizing flow patterns, critical points seem to be intimately related
to turbulence (CC; HH; Kiya & Matsumura 1987) and the kinematics of mixing in
general (Ottino 1989). Previous studies (CC; Perry & Steiner 1987; HH) have pointed
out the importance of flow topology for turbulence quantities. Streamline centres
were identified as local maxima of vorticity, and were associated with local maxima
in Reynolds normal stresses or turbulent kinetic energy, (k). Streamline saddles were
associated with high Reynolds shear stresses, (—u'v'), and high rates of turbulence
production, (P). A model of the plane turbulent near wake that has achieved some
consensus (CC; HH; Kiya & Matsumara 1987; Perry & Steiner 1987) is based on the
crucial role of centres and saddles. Turbulence is produced by vortex stretching in
the (streamline or vorticity) saddle region, resulting in high levels of (P) and (—u'v')
there, and is then convected along the diverging separatrix towards the streamline
centre, which consequently is associated with high (k). Examination of the data for
the circular cylinder of CC shows however that regions of large normal and shear
stresses may overlap, and that local maxima in (P) may not all be identified with
streamline or vorticity saddles.

1.2, Previous experimental approaches

Several techniques have been used in near-wake studies: flying-hot-wire anemometry
(FHWA) (CC; Perry & Steiner 1987), laser-Doppler velocimetry (LDV) (Owens &
Johnson 1980; McKillop & Durst 1986; Durao, Heitor & Pereira 1986, 1988), and
particle image velocimetry (PIV) (Oshima & Ramaprian, 1991). Table 1 gives a
selective summary of some recent work. The PIV study was intended mainly to
illustrate the feasibility of the technique, and, while the density of velocity vectors
obtained was high, the spatial resolution of the point measurement and/or the
Reynolds number were low. Of the above, only Durao et al. (1986, 1988) dealt
specifically with the square cylinder, but they did not obtain phase-averaged flow
characteristics.

Of those in table 1, only the FHWA studies of CC and Perry & Steiner (1987)
have reported phase-averaged statistics over any extensive region of the near wake.
Phase-averaging in both studies was based on a reference signal, either a pressure
or a velocity signal, at a single point. Such a reference phase becomes less relevant
at distances far from the location of the reference signal, leading to contamination
of the phase-averaged statistics by phase jitter (HH). Both CC and Perry & Steiner
(1987) restricted measurements to within eight diameters downstream of the cylinder
or normal plate. HH, in a study of the intermediate wake 20 diameters downstream
of a circular cylinder, developed an iterative pattern recognition scheme, based on
maximizing the correlation of the instantaneous vorticity. The vorticity was estimated
by applying Taylor’s hypothesis to signals from a rake of hot wires. Because the phase
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reference is local, phase jitter due to a separation distance between reference and mea-
surement points can be reduced, but requires multipoint simultaneous measurements,
A similar, though less sophisticated, conditional averaging technique was used by
Kiya & Matsumara (1988) in their hot-wire anemometry (HWA) measurements eight
diameters downstream of a normal flat plate. Since techniques relying on Taylor’s
hypothesis assume a frozen structure, they are inappropriate for any extensive flow
region with significant streamwise variation such as the near-wake region.

1.3. Scope of the present work

The present work reports on an LDV study, in which the mean, the periodic, and
the random component of the flow around a square cylinder at a Reynolds number
of 21400 were obtained from averaging at constant phase. With its directional
sensitivity, the LDV was considered essential for reliable measurements in the highly
turbulent base region with instantaneous flow reversals. As a single-point technique,
however, a local phase reference could not be used, so a technique similar to that of
CC and Steiner & Perry (1987) was adopted for defining a reference phase. Because
only a limited number of phases were used, only the largest scales corresponding
to the shedding and shed vortices were resolved. The ‘random’ component may be
alternatively viewed as a residual, analogous to subgrid scales in large-eddy simulation.
The quantitative differences in length and velocity scales and qualitative similarities
between the phased-averaged flow characteristics of the flow around circular and
square cylinders were investigated. Asymmetries in the near wake are pointed out,
and their implications for proposed models are discussed. Special interest is directed
at the base region, and the relation between, on the one hand, the vorticity saddle and
streamline saddle, which can be more clearly distinguished in the base region, and, on
the other hand, the turbulence characteristics are examined. Only a selected portion
of the large quantity of experimental data can be presented here; the complete data
set is available from either the first or third author.

2. Experimental conditions and technique

The experiments were performed in a closed water channel supplied by a constant-
head tank. At the measurement station, the channel had a 39 cm x 56 cm cross-section
(cf. a cylinder diameter of D = 4 cm). The origin of the coordinate system used
in the following is located in the centre of the cylinder, and all distances are non-
dimensionalized by D (figure la). A reference velocity, U, was computed from
time-averaged velocity profiles (range: y = —4 to y = 4) at several streamwise
sections in the wake to be U = 0.535 m s~!. This is estimated to be within 2%-
3% of the average cross-sectional velocity. Unless otherwise specified, all velocity
quantities are non-dimensionalized with U. The Reynolds number, based on U and
D, was Re = 21400. The shedding frequency, f, was estimated as 1.77 + 0.05 Hz
from a direct analysis of the low-pass-filtered pressure signal with the peak-finding
algorithm used in the phase-sorting procedure (see below). This estimate agreed
within experimental error with an estimate based on spectral analysis of the raw
pressure signal. The resulting Strouhal number, St = fD/U = 0.132 + 0.004 agrees
with the study of Durao et al. (1986, 1988). Relevant experimental parameters are
summarized in table 1 for the present study as well as Durao et al. and several other
notable studies.

The u'-profile at x = —3 indicated a measureable upstream effect, with a difference
between the free-stream and centreline velocity (%, — ;) of almost 0.1. This contrasts
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with the results of Durao et al. (1986, 1988), who reported a uniform velocity profile
at x = —2.5. Because of blockage effects, the ‘undisturbed’ free-stream velocity in
the region behind the cylinder was actually larger than 1, namely, @, = 1.1. The

free-stream turbulence level, measured upstream of the cylinder, was v~ 002 ;
possible effects of the free-stream turbulence on time-averaged fields are discussed
below in a comparison with the results of Durao et al. (1986, 1988).

The basic experimental technique has been described in detail by Lyn & Rodi
(1994), and will only be briefly outlined. A two-colour LDV forward-scatter system
measured two components of instantaneous point velocities. A reference phase was
defined from a low-pass-filtered pressure signal taken from a tap at the midpoint of a
cylinder sidewall. The time of occurrence of an LDV velocity realization was marked
in relation to the pressure signal, permitting the association of the velocity data with
a particular phase of the vortex shedding cycle. All velocity realizations occurring
within the same phase bin or interval constituted an ensemble at constant phase, such
that statistics at constant phase could be evaluated. A total of 20 phase bins (cf. 16
bins of CC and of Perry & Steiner 1987) was used, which, for a cycle period of 565 ms,
implied a bin width of 28 ms. Because of slow data transfer and computer evaluation
of the Doppler signal, the LDV signal processing system had a dead time of =~ 100
ms, such that successive velocity realizations were necessarily placed in different phase
bins and therefore different ensembles. As a result, the ensemble averages should be
free of McLaughlin-Tiederman LDV bias. The number of samples in a bin varied
depending on measurement point location, with a maximum of 400 samples (cf. 1024
samples in CC and 50 samples in Perry & Steiner 1987) per phase bin in the region
directly behind the cylinder. The duration of a measurement at a point was generally
of the order of 1 hr (at some problem points such as in the recirculation region or at
points where the optical quality of the glass window was inferior, it could be several
hours), or, in terms of shedding cycles, of O(10%) cycles.

Measurements were confined to the upper half of the flow region in order to reduce
the number of measurements needed. It was assumed that the flow in the lower half
could be obtained by reflecting the measured upper flow about the centreline. The
streamwise measurement grid began at the leading edge of the cylinder and extended
to x = 8, and included an ‘inlet’ profile at x = —3. In the lateral direction, the grid
extended from the centreline to y = 2 in the immediate vicinity of the cylinder, and to
y = 2.5 further downstream, as well as selected points on the streamwise grid at y = 4.
In the region, x < 3, y < 1.5, the grid size was 0.125, but outside this region, this was
increased to 0.25 or more. Within 1 cm of the cylinder, optical access by the four-beam
LDV system could not be maintained, so that two-component measurements were
not performed in this region. One-component measurements were obtained however
in one sidewall region and were reported in Lyn & Rodi (1994).

Several checks on consistency were made on the data to provide an indication of
their quality, and are discussed in more detail in Lyn (1992). The integrated flow
discharge from y = —4 to y = 4 remained constant in the wake region to within 2%
for both the time-averaged and for each of the phase-averaged fields. At x = 8, the
time-averaged drag coefficient was estimated from the integral of the time-averaged
streamwise momentum flux to be = 2.1, which agrees with accepted literature values.
For a symmetric time-averaged two-dimensional field, both 7 and —/v" should vanish
on the centreline. The average over all measured centreline points for 7 was —0.04,
and for —v" was —0.007. These may be compared with maximum absolute values

of 7 and —w'v" which exceeded 0.3 and 0.1 respectively. These comparisons give some
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support to the two-dimensionality achieved in the flow. The validity of the reflection
procedure was examined by considering the centreline measurements of the ensemble-
averaged fields, since the reflection procedure results in an additional measurement at
each centreline point. The average magnitude of the difference between the original
and the reflected ensemble-averaged measurements on the centreline for (u), (v), and
(—u'v") was typically 0.01, 0.07, and 0.006. (In figure 5a below, two estimates of
the velocity vectors on the centreline based on the reflection assumption are shown.)
From these checks, the uncertainty in the ensemble-averaged results for (u), (v), (u'),
(v') is estimated to be less than 0.05, with the largest uncertainty in (v). In terms of
the profile maximum, the uncertainty in (—u'v’) is expected to lie in the range 15%
- 25% in the region of large profile maxima, e.g. in the base region, but may be
larger further downstream as the profile maxima in (—u'v') decrease. The uncertainty
in quantities based on estimates of velocity gradients may be substantial. Estimates
of local divergences (0(u)/dx + @{(v)/dy) could attain magnitudes of 1 or more at
isolated points. In the contour plots to be presented of quantities involving velocity
gradients, points at which the estimates of absolute local divergence were larger than
0.4 were excluded; these typically represented less than 10% of the total measurement
points.

In the following, contour plots of various fields will be important in the discussion of
flow topology, since identification of centres and saddles and extremal features is based
on visual examination of the appropriate contours. The contours were generated (with
routines from the NCAR software package) from unfiltered raw data, but smoothing
was applied. Hence, the location of flow features, such as centres and saddles as
given in the following, while considered to be relatively reliable, should be viewed
with some caution. It may also be argued that the errors introduced by the contour
plotting are random rather than systematic. As the ensemble-averaged features seen
in the limited results presented here are typical of all phases, the discussion based on
them is not necessarily very sensitive to contouring imperfections.

3. Experimental results
3.1. The mean (long-time-averaged) field

For an unsteady flow, the mean flow is an artificial construct, but it remains useful
as an analytical tool as a base flow over which is superimposed the motion of vortex
structures. It also affords a comparison with the only other published velocity results
on the flow around a square cylinder (Durao et al. 1986, 1988). The mean field may
also play a more important role according to recent theoretical work on the absolute
stability of the mean velocity profile in the near wake (Triantafyllou, Triantafyllou &
Chryssostomidis 1986).

The streamwise variation of several mean centreline quantities is compared in
figure 2 with published results for both circular and square geometries. The present
results for centreline velocity, #, = u'(x,0), agree with those of Durao et al. (1986,
1988) for x < 3. The mean recirculation region extends to x = 1.4, compared
to, for the circular cylinder, a recirculation length of 1 (CC) at relatively high
Re, and 1.65 (McKillop & Durst 1986) at an Re closer to the present work. A
coordinate system with origin at the cylinder centre may however not be the most
appropriate for comparing the size of the recirculation region in the two geometries
since the streamwise coordinate of the separation point differs (but see the discussion
of lengthscales in §4.2). In both geometries, the mean fields in the base region are
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FIGURE 2. Comparison of time-averaged results for streamwise variation: o, present results; o,
Durao et al. (1986); +, CC; o, McKillop & Durst 1986. (a) Centreline velocities, (b) root mean
square of horizontal velocity fluctuations, and (c) root mean square of lateral velocity fluctuations.

characterized by relatively rapid streamwise variations; farther downstream, the mean
flow varies much more slowly. For x > 3, the present results differ significantly from
those of Durao et al. (1986). Because the wake is wider for the square than for
the circular cylinder, mean centreline velocity recovery in the former is expected to
be slower than the latter, as is the case in figure 2. Differences between the two
circular cylinder cases, attributed by McKillop & Durst (1986) to differences in Re,
are also quite substantial. For the present case of sharp-edged bluff bodies, the effect
of different Re is expected to be much less dramatic.

The present results for @' and v" on the centreline agree well with Durao et al.
(1986) in the near wake. In the base region, the present results indicate a lower '
and a higher v" for x < 3. Both the present results and Durao et al. (1986, 1988)
show however that ¥ and v" for the square cylinder case are larger than those for
circular cylinder case, with ¥’ attaining a maximum of ~ 0.9. The difference between
the near wake (x > 4) and the base region x < 4 is also seen in the much larger
streamwise changes in the latter. The profiles of various mean quantities at x = 1
are compared in figure 3 with the results of Durao et al. (1986) and those of CC.
Durao et al. (1986) took measurements in both upper and lower halves of the flow,
so their results have been reflected about the centreline, with measurements in the
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2.0 L) L) T T T TTI T L 2.0 T T L} T Ll L) ] L] L] T
L@ | 1 [ ]
- 4 | 4
15 ¢ 4 15} .
S 1 ¢t ;
L b o 4 - 1
y 1.0 [ 1 1.0 &0 B
F t_ ®© o R ™ AN O T
o E - -
L o ] L A A O ]
) Too g ] _ A A0 ]
05} ot ' 4 o5t 4 a _
- ° q L] ] T 80| a ]
[ o + ] [ & |a ]
L ol o 4 L o5 h d
0 U | PR S S S Y B | 0 [ S S S R S |
-0.1 0 0.1 0.2 -0.1 0 0.1 0.2
-u'v" -uvlt  —uv, —{uv’)

FIGURE 4. Comparison of time-averaged profiles of —u'v" at x = 1: (a) with previous measurements
(symbols as in figure 3), (b) with contribution due to periodic component, A, and due to turbulent
component, A.

two halves being distinguished. Good agreement is found in both #'- and 7'-profiles.
The square-cylinder wake is & 25% wider than the circular-cylinder wake. The data
of CC may not be comparable because of the much larger Re, but the data of
McKillop & Durst (1986) at a more comparable Re but at a slightly different x show
a similar trend. The effects of blockage are more marked in the square case, and
so @' is significantly larger than unity in the free-stream (in Durao et al. 1986, with
the largest blockage, almost as large as 1.5). The agreement of - and v"'-profiles is
generally good, except that the results of Durao et al. (1986) tend to be systematically
larger than the present results, particularly towards the free stream.

The —w'v" -profile (figure 4a) exhibits two extrema, an expected maximum in the
shear layer region, and an additional local minimum of opposite sign nearer the
centreline within the recirculation region. Although the latter feature does not appear
in Durao et al. (1986), a similar feature is clearly observed in the circular-cylinder
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data of McKillop & Durst (1986) at a slightly different streamwise location. It is
not seen in the data of CC at x = 1 since this section occurs at the end of the
recirculation region for their case. The periodic and the random components of
—uv'" are presented separately in figure 4b. The latter, (—u'v’), i.e. the average over
all phases of (—u'v'), shows a single maximum. Thus, the local minimum seen in
—wv" is due entirely to the periodic component, —i, which exhibits two extrema.
Discrepancies between the present results and those of Durao et al. (1986) are
largely attributed to the larger blockage, smaller aspect ratio, and the higher free-
stream turbulence level of the latter. West & Apelt (1982) have shown, for flow around
circular cylinders, that larger blockage and smaller aspect ratios are associated with
a more negative mean base pressure and hence higher drag coefficients. Higher
turbulence intensities (due to small-scale turbulence) result in the opposite effects
(Courchesne & Laneville 1982; Nakamura 1993). The relatively good agreement with
the results of Durao et al. (1986) in the region x < 3 indicate that the opposing effects
of the different experimental conditions cancel each other in the base region. Farther
downstream, however, the effects may be reinforcing rather than opposing. Higher
free-stream turbulence levels enhance entrainment into the wake, while larger blockage
sharpens mean cross-stream velocity gradients thereby also promoting entrainment,
with the final result that the centreline velocity in the experiment of Durao et al.
(1986) recovers significantly more quickly. Such effects should also be borne in mind
in the following comparisons with the circular-cylinder results of CC, though the
effects of modest differences in blockage (7% compared to 4%) and in turbulence
levels (2% compared to 0.6%) seem unlikely to change substantially the main results.

3.2. The velocity field and its critical points

A velocity vector plot for a single phase ((9,19), chosen since it corresponds ap-
proximately to CC’s phase (7,15) for which most results were given), is shown in
figure 5(a) for a reference frame fixed to the cylinder. The figure also shows the
measurement grid (additional measurements at y = 4 and at x = —3 were also taken
but not shown). Within a region, x < 0.5, 0.5 < |y| < 0.75, only one-component
measurements were available, so that, for the purposes of figure 5(a), the cross-stream
velocity, (v), in this region was set to zero. The two estimates of the velocity vector
along the centreline, arising from the reflection about the centreline, agree fairly well.
In this reference frame, a centre and an associated saddle are observed for this phase
immediately downstream of the cylinder at (x,y) = (1.1,0) and (x,y) = (1.4,-0.6)
respectively, with only a wavy structure seen farther downstream. The corresponding
instantaneous streamlines are shown in figure 5(b); these were computed by inte-
grating the (u)-field at a section across the stream, assuming an undisturbed flow at
y = —4, taken as a zero streamline. The closed streamlines characteristic of a centre
(at (x,y) =~ (1.2,0)) and the (near) intersection of streamlines characteristic of a saddle
(at (x,y) = (1.5,—0.7)) may be seen. This centre is not however associated with any
vortex structure, and its physical relevance is dubious.

Streamlines are shown for two different phases in two different reference frames
moving with streamwise velocities of 0.43 (figure 6a, phase (5,15)) and 0.78 (figure 6b,
phase (9,19)) respectively. These velocities are based on estimates of vortex celerities
discussed below. In figure 6(a), a streamline centre is observed at (x,y) =~ (2.1, —-0.2),
and the associated streamline saddle is located at (x, y) = (2.3,0.8). The centre-saddle
system is elongated in the cross-stream direction, and inclined with respect to the
centreline, and corresponds to a vortex structure, which has not yet been completely


https://doi.org/10.1017/S0022112095004435
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Edinburgh Library, on 23 Jan 2019 at 14:11:07, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/50022112095004435

A laser-Doppler velocimetry study of ensemble-averaged characteristics 295

X
0 1 2 3 4 5 6 7 8

[ (a) —

§
/
4

. ’ ’-\ J \\\;
-1 //// 00>

-2 —T———

é

0 1 2 3 4 5 6 7 8

f]lTlllTTllllIlllllllllllIIIIIIT_TI

FIGURE 5. (a) Velocity-vector plot, and (b) streamline plot, at phase (9,19) in the reference frame of
the cylinder (stream-function values were chosen to highlight critical points and are not equidistant).

‘shed’. figure 6(b), in which at least three streamline centre-saddle systems can
be observed, resembles closely the idealized sketch of figure 1(b). The centre-saddle
system at x = 6 corresponds to a shed vortex structure, and exhibits greater upstream—
downstream symmetry than seen in the still-attached structure of figure 6(a). With
the downstream growth of the wake and the vortex structure, the distance between
centre and saddle also increases.

Although each streamline centre-saddle system of figure 6(b) does correspond to
a vortex structure, their locations may not be precisely determined from figure 6(b).
Before, during, and after shedding, a vortex structure will move with different ve-
locities. A single choice of a reference frame velocity can be made only for a single
structure. In the near wake, vortex celerities change slowly, and so a single reference
frame velocity may be useful for this region. The motion of the vorticity peak may
differ from that of the centroid of the vorticity distribution (see §3.4 for a discussion
of the estimation of the centroid location). The latter was selected as the basis for
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FIGURE 6. Streamline plots from reference frame moving with a selected vortex structure: (a) phase
(5,15), U. = 043, vortex structure with centre at x =~ 2.1; (b) phase (9,19), U. = 0.78, vortex
structure with centre at x = 5.9 (stream-function values were chosen to highlight critical points and
are not equidistant).

determining the reference frame velocity since the location of the centroid is more
reliably determined. The reference-frame velocity of 0.78 is based on the celerity of
the vorticity centroids for x > 4, so that only the location of the centre and saddle of
the structure at x = 6 can be reliably determined. Estimates of celerity of the vorticity
peak tend to be &~ 5% lower than that of the vorticity centroid, but are subject to
greater uncertainty. If based on the the vorticity peak, the locations of the streamline
centre and saddle would be slightly shifted towards the centreline.

3.3. Vorticity centres (peaks) and saddles

Vortex structures are directly observed from contours of (@) = d(v)/dx — d(u)/dy
(figure 7). Gradients were computed using a three-point scheme with smoothing
applied only in drawing the contours. The (w) = 0 line is drawn but should be
regarded with caution in regions of small vorticity gradients, e.g. in the near wake
away from the centreline, because of uncertainties in {w)-estimation and limitations of
the contouring software. The streamline centre seen in figure 5(b) does not correspond
to any vorticity peak, and the vorticity peaks of figure 7(a) beyond x = 3 are not found
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FiGure 7. Contour plot of (w) for {(a) phase (5,15), (b) phase (9,19): —————, , negative values,

, positive values; contour intervals |{(w)] < 0.8 : 0.2, 0.8 < [{w)] < 2.4 : 0.3, 2.4 < [(w)] < 3.6
: 0.4. In this and following contour plots, the approximate location of some streamline centres (+)
and saddles (x) as well as vorticity saddles (#) are given.

in either figure 5(b) or figure 6(a). Also drawn on figure 7 and on subsequent contour
plots are approximate locations of streamline centres and saddles in the central region
2 € x £ 7, determined from streamline plots based on estimated vortex celerities.
Vortex peaks coincide within experimental uncertainty with the relevant streamline
centres. Streamline saddles in the near wake similarly correspond to a zero-{w) point,
but the zero-(w)-contour in the base region lies well above the streamline saddle.
Vorticity saddles in the near wake are difficult to identify precisely because of the
low levels of vorticity, but are close to zero-(w) points. Thus, vorticity and streamline
saddles are indistinguishable within experimental accuracy, and are located in regions
where (w) = 0. In the base region, vorticity saddles are more easily identified, but
their relation to streamline saddles is more complex, as further discussed in §4.3.
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RGURE 8. Characteristics of vortex structure motion. (a) Trajectory of vortex centroids, e, present
results; o, CC; and vortex peaks: +, present results; x, CC. (b) Variation of streamwise location of
vortex centroids and peaks with time or phase (symbols as in (a)): , slope = 0.78 for x > 4,
slope = 043 for x < 3; ————— , slope = 0.83 for x > 4, slope = 0.55 for x < 3.

3.4. Vortex motion and downstream variation of vortex characteristics

The (w)-distribution is not circularly symmetric about the peak, and so peaks do
not coincide with the centroids. The location of the peak, (x,, y,), may be the more
physically relevant, but its determination is complicated by noise in the data as well
as coarseness of the measurement grid. A large scatter is observed in (xp, y,) in the
base region (figure 8(a)). Being based on averaging over a large number of points
and a large area, the location of the centroid, (x,y.), is determined more reliably,
and hence its variation is smoother. Centroids were computed with a variable cutoff,
[{w)ol, and a specified flow region, using

Kb I3 >|é<w)i’jAAi'j
c = il s 2
¢ Y. {w)ijAA )

{w)ijIZ{w)ol

where ¢ is either x or y, and A4;; is an element of area over which (w);; is assumed
to take on the measured point value. The cutoff, |(w)o|, was taken to be 0.05 in
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the lower-vorticity near-wake region compared to maximum values of |{(w)o| typically
greater than 1.5. A higher cutoff value of 0.15 (cf. maximum |{w)| > 3) was applied
in the base region, where vortex structures had tails with significant levels of vorticity.
The specified flow region over which (2) was taken was determined from contour
plots of {w) such as figure 7 on the basis of identifying distinct vortex structures.

Peaks for x > 4 are located close to the centreline, at y, ~ 0.25, while centroids
are located at y. = 0.55. In this region, the measurement grid size in y, Ay = 0.25,
so an uncertainty in y, of + 0.1-0.2 may be expected. For x < 3,|y| < 1.5, where
Ay = 0.125 or smaller, y. and y, may approach each other, though y,-values are
erratic because of the scatter in the maximum values of [(w)|. CC reported values
of y, < 0.25 and y. < 0.4 throughout the near wake, reflecting the smaller width of
the circular-cylinder wake. Towards the end of the measurement region, x, > 6, a
tendency for y. and y, to increase is observed.

The streamwise location of the vortex centroid and vortex peak as a function
of a nondimensional time, t/St, is shown in figure 8(b) (this coordinate was chosen
because the slope gives directly the vortex celerity). For x, > 4, x, varies approximately
linearly with t/St, with a slope reflecting a constant celerity, U, = 0.78, which was
used previously in figure 6(b) as the velocity of the reference frame. For the circular
cylinder, a value of U, = 0.83 in the comparable region is inferred (CC), while for
the normal bluff plate, Fage & Johansen (1927) reported a value of 0.765, and for
a rectangular cylinder, Bearman & Trueman (1972) reported a value of 0.76. The
small difference in U, for the square and the circular geometries contrasts with the
substantial difference in mean centreline velocity, @, (figure 2a). Both results are
however correlated by U, = 045 (@, + %), where in the present case, the measured
mean free-stream velocity, #,, = 1.1, was used. Celerities in a steady self-similar plane
mixing layer are usually described by a similar correlation with, however, a coefficient
of 0.5 rather than 0.45. This may point to an indirect relationship between vortex
motion and mean velocity gradients or strain rates, in which the vorticity peak adjusts
its location to maintain a stable celerity. The value, U. = 0.78, is larger than the
value of 0.71 for #'(x,, y.), but U, should be more closely related to (u)(x,,y,) (HH),
and generally better agreement is obtained between U, and (u)(x,, y,).

In the base region, the centroid is not well defined since the distribution is not
‘compact’; hence, the centroid as computed depends more strongly on the chosen
cutoff value and the specified flow region, and (x.,y.) of figure 8 in this region is
thus more closely related to the vortex peak. A linear variation is less clear for
x < 3, though an average streamwise celerity, U, = 0.43, may be inferred (cf. a value
of 0.55 for the circular cylinder). Unlike %, in the near wake, which is only slowly
varying, %} in the base region varies rapidly downstream, contrasting sharply with the
relative constancy of U.. A simple mixing-layer-type correlation based on the average
of mean free-stream and centreline velocities therefore is inadequate. Nevertheless,
vortex structures do develop from shear layers with both a low-velocity and a high-
velocity side. Although velocities in the base region may be low, the high-velocity
region of the shear layer will equally influence the celerity of vortex structures, which
will therefore be significantly larger than zero. The high values of celerities imply
that, in much if not all of this region, a reference frame fixed to the cylinder is not
useful.

3.5. The periodic component

The variation with phase of (u) and (v) (also # and ) at various cross-stream points at
a base-region station (x = 2) and at a near-wake station (x = 6) is shown in figure 9.
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FIGURE 9. Variation with phase of (u), x, and (v), A, at the same lateral locations at two sections,
(a) x =2 and (b) x = 6. Lines are drawn for visual clarity only; horizontal lines indicate average

over all phases: s (u); ————— , {v).

The sharp decrease in # at x = 2, 0.5 < y < 1, accompanied by a sharp increase in
¥, signal the shedding of a vortex structure. Near the centreline trajectory of vortex
peaks, ¥ is quite flat for much of the cycle, this being associated with free-stream
fluid being drawn across the centreline, but makes an abrupt transition as a peak
of concentrated vorticity passes by. After a structure becomes well defined, vorticity
peaks are located in regions where both #iii and 7 are small (figure 10). At these
peaks, (u) = U,, such that the amplitude of & and hence it is small, while values of
§ and §7 at centres are small because (v) ~ 7' =~ 0. Between successive peaks, the
periodic motion is primarily cross-stream, and so # remains small along the almost
horizontal trajectory of the vortices, with the result that i is small along the entire
centreline region.

A gross symmetry about the centreline of the contours of &z and 57 was noted by
CC, but peak magnitudes of ifi on one side of the centreline may be more than 50%
larger (just after shedding, up to 300%) than those on the other side at the same
streamwise location. The largest magnitude of —ib (figure 10c) associated with a
structure is observed downstream of the vortex peak, on the same side of the cylinder
as that on which the given vortex was shed. The magnitudes of the extrema on the
other side are noticeably less, attributable to mixing occurring near the saddle region.
The ‘strength’ of rotation is thus quite non-uniform. A wide swath of same-signed
—iii-contours extends obliquely from one side of the centre line to the other, and is
believed to be associated with anomalous features in the distribution of the Reynolds
shear stress, (—u'v’), as discussed below.
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FiGURe 10. Contour plots of the periodic stresses for phase (9,19): (a) @i, minimum value contour
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, positive values; absolute value of minimum contour 0.0075, intervals | — &] < 0.0375 :
0.015, 0.0375 < | — @ip) < 0.1375 : 0.025, 0.1375 < —iiv < 0.2875 : 0.0375.

3.6. The turbulent component

The phase variation of the (two-dimensional) turbulent kinetic energy, (k) = ((u%) +
(v*))/2, and the Reynolds shear stress, (—u'v’), is shown in figure 11. At x = 2, both
signals are in phase for y > 0.5. Since (—u'v') does not change sign in this region,
which remains strongly influenced by the separated shear layer at all phases, small
values of (k) are associated with small (absolute) values of (—u'v’) that result as free-
stream fluid is drawn into the base region. Phases during which (k) and (—u'v’') reach
a minimum occur with phases of high (negative) (v) (figure 9). Similarly, maxima in
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HGURE 11. Variation with phase of (k), x, and (—u'v’) A, at the same lateral locations at two
sections, (@) x = 2 and (b) x = 6. Lines are drawn for visual clarity only; horizontal lines indicate

average over all phases: (k) ————— , (—u'v').

(k) (and (—u'v’) for y = 0.25) occur with sharp transitions in (v). Only in the region
near the centreline (y < 0.25) does the phase relationship between (k) and (—u'v')
(and also (v)) become erratic. At x = 6, where (—u'v’) does change sign during a
cycle, large (small) absolute values of (—u'v’') are associated with large (small) values
of (k), so that even though local peaks in (k) and (—u'v') differ in location in the
near wake, this does not necessarily imply that the two quantities vary out of phase
with each other at any given location.

The contours of the distribution of turbulent stresses (and also (k)) in the wake are
shown in figure 12. Peaks of (#/?) and (v'>) and hence of (k) coincide with vorticity
peaks for x > 2. The large difference between the peak values of () and (w?),
particularly in the base region, is notable. The contours of (k) essentially follow those
of (1), but are subtly influenced by («/?); the mild streamwise asymmetry about the
near-wake peak in (') is accentuated in (k), such that a valley of low turbulence cuts
across the wake just downstream of the peak (k) at x = 5.8 (see also HH). Previous
studies have emphasized the correlation between streamline saddles with regions of
high (—u'v') (CC; Perry & Steiner 1987; Kiya & Matsumura 1987; HH). The present
results (figure 12d) give limited support to this model since high (—u'v’) regions are
indeed observed near saddle regions. Peaks in (—u'v’) tend however to be located
consistently upstream of the streamline saddle and the vortex peak, and closer to the
centreline. Double peaks in (—u/v’) are observed in the region 5 < x < 6, and are
also clearly seen in CC (phase (7,15)) and less so in HH at x = 10. They appear in
the majority of phases throughout the measurement region, and are unlikely to be a
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FIGURE 12. Contour plots of the turbulent stresses for phase (9,19): (a) («), minimum contour
0.025, intervals (¥?) < 0.2 : 0.025; (b) (v'*), minimum contour 0.025, intervals (v'*) < 0.15 :
0.025, 0.15 < (v"?) < 0.35 : 0.05; (c) (k) (contour levels same as for (v'>)); (d) (—u'v'): ————— ,
negative values; , positive values; absolute value of minimum contour: 0.01, intervals
0.01 < [{(—/v')] < 0.06 : 0.01, 0.06 < |{(—u'v")| < 0.12 : 0.0185.



https://doi.org/10.1017/S0022112095004435
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. University of Edinburgh Library, on 23 Jan 2019 at 14:11:07, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/50022112095004435

304 D. A. Lyn, S. Einav, W. Rodi and J.-H. Park

LN AN INRLASE S A N N B

a1 e ] 11

=
=

r
("9"‘)\‘\&: S
VLS
~/ ’-/n—-./

[~
| a
-~
llll’-l./l-alllllll

-)
e

T 17 T T 1T

Ly b g g bre by

NN !

0 1 2 3

FIGURE 13. Contour plots of the Reynolds shear stress at three successive phases: (a) phase (1,11), (b)
phase (2,12), (c) phase (3,13) showing the genesis of the local double peak in the (—u'v')-distribution
(contour intervals as in figure 12d)

statistical aberration, or to have resulted from phase jitter which would tend to smear
rather than to produce a bimodal distribution.

The evolution of the double-peak feature is followed at successive phases in fig-
ure 13. At phase (9,19), the centre at (x,y) ~ (2.9,—0.3) is located in a region of
low (—u'v') (figure 12d), consistent with recent models, and this remains so (though
reflected about the centreline) at phase (1,11), when the vortex (at (x,y) = (3.4,0.5))
is just being ‘shed’ and the corresponding peak (—u'v') remains located away from
the vorticity peak. A ‘leg’ then develops almost perpendicular to the main body of
the (—u'v’')-contours, but parallel to the main body of the upstream (—u'v’)-contours.
This is evident by phase (2,12) when values of (—u'v’) in the ‘leg’ become comparable
to those nearer the saddle region, and by phase (3,13), the double-peak structure is
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established. Similar features are seen farther downstream, although a weakening of
the (—u'v')-peaks near vortex peaks may be discerned. The results of HH closest to
the cylinder (at x = 10) also clearly show a ‘leg’ of (—u'v') extending through a vortex
centre.

3.7. Turbulence production

In flow that is two-dimensional in the mean, the production, (P), of (k) is the sum of
shear stress production, (P),, and normal stress production, (P),, where

(P), = (~aio)9) = (i) (G2 52, (a)
(p), =~ %2 m%ﬂ (3b)
= [(v'z) - (u’z)] %{?C—) (3¢)

and (%) is (twice) the shear strain rate, and (3c) follows from continuity.

In the vortex-peak region, contours of () (of a single sign) form a neck from one
side of the cylinder to the other, with larger absolute values being attained on the
saddle side (figure 14a). The contours of (P), (figure 14b) resemble those of (—u'v')
rather than (¥). Peaks in (P), and (—u'v) generally coincide, but are distinctly
located away from local peaks in (%), at least in the near wake. The peak and the
‘leg’ seen in the (—u/v')-distribution are weakly present in the (P) -distribution. A
similar feature was noted by HH and attributed to large strain rates in that region
and to spanwise undulations of the vortex structure. Contours of (P), (computed
using (3b)) are erratic (figure 14c), and areas of negative (P), are more prominent. To
some extent, this is attributed to (P), often being a difference of two ‘large’ numbers
and to its sensitivity to continuity not being satisfied by the measured velocity field.
Peak magnitudes of (P), and (P), are comparable in both the base and the near-
wake regions, whereas, in circular-cylinder measurements farther downstream (HH),
the former was reported to be generally three times larger than the latter. In the
vicinity of vortex peaks, (P), is small though not always negligible, but (P), may be
substantial, especially in the base region where large differences between (u'*) and
(v"?) and the elongated shape of the vortex structures give rise to large normal strains.
Unlike (P),, (P), is significant in the region between successive structures. Regions
of negative (P), are also consistently observed in vortex-peak regions (see also HH).
This arises where 8{(u)/0x < 0 (or d{(v)/dy > 0), since (') > («’*) in most regions
of the flow. Whereas streamwise gradients are negligible in the mean near-wake
flow, they are significant in the phase-averaged flow, particularly when coupled with
() = @) > [(=uv)].

The patchy features seen in the (P), -contours appear also in the (P)-contours
(figure 14d). A region of high (P) extends through the vortex peak region at
(x,y) ~ (2.75,—0.25) to (x,y) = (3.2,0.6), which is near a streamline saddle. Since
(P), is negligible in the vortex peak region, the local peak in (P) there is due to
high values of (P),. Farther downstream, (P}, still contributes to (P) in vortex-peak
regions, but (P), i1s no longer negligible. Remnants of negative (P), are seen in
(P) in the near wake, e.g. at x = 5.5. Previous discussions of negative turbulence
production (e.g. Hussain 1983, 1986) have been concerned primarily with negative
mean production in shear layers, which was explained in terms of contributions due
to ‘coherent’ Reynolds stresses such as —ip. From (3), negative (P) may occur where
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FiGURE 14. Contour plots for phase (9,19) of (a) (&), contour intervals |(&)] < 0.75 : 0.15,
(#)| = 0.75 : 0.45; (b) (P),, contour intervals for x < 3.5 are 0.04, for x > 3.5 are 0.008; (c) (P},,
contour intervals same as for (P), (d) {P), contour intervals same as for (P), —————, , negative
values; , positive values.
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FiGure 15. Contour plots of the production term, (P),_,,», in the transport equation for (—u'v') at
three successive phases: (a) phase (1,11), (b) phase (2,12), (¢) phase (3,13), contour intervals: £0.025,
£0.05, £0.1, £0.2, £0.4, 10.6.

I(P),| € |{P),l and (P), <0, such as in the vicinity of a vortex peak. The results of
CC did not show any region of negative (P), but their contours do indicate a necking
or saddle point in (P) near a vortex peak. Because of the well-known importance
of transport effects on (k), the contours of (P) do not provide any direct insight
concerning the (k)-distribution.

The anomalous double peaks in the (—u'v)-distribution prompted an examination
of the contours of the production term in the equation for (—u'v'), namely

2 a<v> 12 a(“)
(P)(_ywy = (u )7; + (v >W' 4)
These are plotted in figure 15 for phases 1-3. With a striking exception, the (P),_,,»
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contours are similar to the (—u'v’)-contours, positive (P) _,,, being associated with
positive (—u'v'). Peak values of (P) _,, are found notably away from the streamline
saddle. The striking exception occurs in precisely the anomalous vortex peak region,
where high values of (—u'v') were previously observed. In this region, e.g. (x,y) =
(4,0.5), the signs of (P),_,,, and (—u'v') surprisingly differ. The anomalous peak
in (—u'v’) near vortex centres cannot therefore be attributed to locally (relatively)
high values of (P)(_u,,,,) (of the same sign), but points rather to the importance of
non-local transport effects, which was hinted at by the same-signed —fb-contours
extending from one side of the centreline to the other of figure 10(c).

4. Further discussion
4.1. Streamwise variation of integral characteristics

The streamwise separation of successive vorticity peaks in the near-wake region,
I, =~ 5.8, is larger than that found for the circular case, I, ~ 4.3 (CC) or the bluff
plate, I, = 525 (Fage & Johansen 1927), but approximately the same as that for
a rectangular case, I, = 5.9 (Bearman & Trueman 1972). Since [, is the distance
travelled by a vortex in one cycle, the ratio of I, for the square and the circular
cases, 5.8/4.3 &~ 1.35, should be approximately equal to the ratio of the reciprocal of
the Strouhal numbers (namely 0.179/0.132 ~ 1.36, assuming that the vortex celerities
do not differ greatly). A similar result is obtained if I, and St of the bluff plate or
the rectangle are considered. The shape of the vortex contours in the near wake is
similar for both geometries, and so the increase in the streamwise lengthscale in the
square geometry implies an increase in the cross-stream lengthscale, consistent with
the observed larger wake width. Larger streamwise lengthscales also imply smaller
mean streamwise gradients, consistent with the slower recovery of the centreline #'.
The ratio, y./(l«/2), for the square cylinder is larger than that of the circular cylinder
(0.19 compared to 0.16), but smaller than the bluff plate (0.25, Fage & Johansen,
1928). All are however smaller than the value, 0.28, predicted by the classical von
Karman analysis (1912).

Peak vorticities, (w),, decay rapidly in the base region and more slowly in the near
wake (figure 16a). In the base region, the two separated shear layers with oppositely
signed vorticity interact more directly and vigorously, resulting in substantial cancel-
lation of vorticity. In the near wake, after a vortex structure has been shed, interaction
with other structures with vorticity of the opposite sign is more ‘passive’; reduction
of (w), is due to a slower more ‘diffusive’-like process linked more to entrainment of
free-stream fluid.

The circulation, I', associated with the shed vortex, was estimated from a surface
quadrature of |[{w)], i.e.

F(x) =) (0)ijAdi, (5)
LJ

in a manner similar to the determination of the vorticity centroid location (see §3.4).
Values of I were ~ 60% higher than those reported for the circular-cylinder case. The
difference is due not only to higher values of (w), (= 25% higher in the near-wake
region), but also to larger lengthscales. The streamwise variation of I', normalized
by the initial circulation, I',, discharged into the wake during a cycle, is plotted in
figure 16(b). I'y was estimated from the base pressure coefficient, Cp, according to
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FIGURE 16. Downstream decay of (a) peak vorticity, {w),, (b) I' /T (I'y = 10); @, present results;
o, CC (I'y = 5.9).

the approximate bluff-body relation (Roshko 1954; Bearman & Obasaju 1982),

1-Cp
To=—%5— ©)

Cp,» was not measured, but over the same Re range Bearman & Obasaju (1982)
reported a Cp, =~ —1.6 for stationary square cylinders, implying Iy = 10 for the
present case compared to 'y =~ 5.9 for the circular cylinder (CC). The streamwise
variation of I' /Iy is very similar, both qualitatively and quantitatively, to that
observed by CC. In the near wake, I' /Iy slowly decays with an average rate of decay
of =~ 10% per diameter of travel (cf. 8% decay rate in CC). figure 16(a) indicates an
at least 60% decrease in (w),, indicating that the reduction in I" in the base region
is due primarily to reduced values of (w).

Peak values of the ‘periodic’ stresses decay sharply in the base region (figure 17),
but then flatten out in the near wake, reminiscent of the decay of (w),. (0)max attains
a maximum at x ~ 1.75, approximately the position at which a vortex structure is
‘shed’, or as discussed below, the downstream limit of the vortex formation region.
Beyond the maximum, (33),.,x is substantially larger than (#i#)m.x, typically by a factor
of 4-6. Because of differences in streamwise lengthscales in the near wake, any direct
quantitative comparison of the values for a square and a circular-cylinder should be
cautiously interpreted. The sharp decay of the periodic stresses seen in the present
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FiGure 17. Comparison of streamwise variation of peak values of various characteristics: (a)
0; (““)max, ., (u, )max, ., (ul2>max> (b) ’ (Uv)max, ) ( )max, . (v,2>maxa (C) ’ ("“U)max, o,
(~u'V ) max ; B, (—u'v’), .. ; closed symbols: present results: open symbols - CC.

results is hardly noticeable in the circular cylinder results. The present levels are more
than =~ 200% larger than those of the circular cylinder in the base region, and more
than ~ 70% in the near wake.

Compared to the decay in the peak values of the periodic component and the
vorticity, the decay of the peaks in the turbulent component are surprisingly gradual.
In the case of (u 2Y nax, this leads to (U'*)max being larger than (fifi)..x throughout
much of the measurement region. While (§0)nay > v/ ),,,a,r throughout, the difference
narrows towards the end of the measurement region, and farther downstream, (v’z),m,,c
may become dominant. The small disparity between the maximum normal turbulent
stresses contrasts with the already noted much larger disparity between the maximum
normal periodic stresses. A narrowing with downstream distance of the difference
between the maximum and the average (over all phases) turbulent stresses is also
noted, at least for the normal stresses. In the base region, stronger incursions of
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free-stream fluid across the centreline would bring longer periods of low turbulence,
which together with larger maximum values, would imply larger deviations from the
average value.

4.2. A scaling argument
A scaling argument, based on the observation that I' /Iy is approximately the same
for both the square and the circular geometries, sheds light on the relative magnitudes
of the periodic and turbulent quantities as well as on mean integral characteristics. I’
is a product of a velocity scale, %, and a lengthscale, #:

h_ (FO)sq ~ 10

Leirc B (Lo)circ - 5 (Ta)
_ @2,
(%g)circ ’ (7b)

where the subscripts sq and circ indicate the square and the circular case. In the near
wake, Ly / Leire = 1.35, where £ ~ . Hence, %2, /U2, = 1.6, roughly agreeing with
the observed ratio of magnitudes of peak periodic ‘stresses’ in the near wake.

This scaling is consistent with observed differences in the drag coefficient, Cp,
for the two geometries. With the thin shear-layer approximation, the drag force is
proportional to the momentum integral, Fp o f_"o00 #'(u,—u')dy (Tennekes & Lumley
1972). Beyond the base region, the following scaling relations apply: @ ~ @, and
(', —u') ~ U, so that Fp ~ @, UYL, or Fp ~ U, since u., = 1. The ratio of drag
coefficients should therefore be

(CD)sq ~ %sq ,?Sq
(CD )circ %circ L4 cire

which is consistent with the value of 2.1/1.25 = 1.68 observed. Equation (8) is more
directly expressed as (Cp)sq /(Cp)eire ~ (I'0)sq/(Io)cire = 1.7, or alternatively, Cp /Iy =
constant. Table 2 shows values of Cp/I'y for various symmetric bluff-body flows
with drag coefficients varying over an order of magnitude, including cases of critical
flow around a circular cylinder and the peak drag case of a rectangular bluff body
(width-to-thickness ratio, B/A = 1.62). For the rectangular (including the peak drag
case), square and circular cross-sections for ‘subcritical’ flows, Cp/I'y & 0.22; even
for critical flow around a circular cylinder and flow around a bluff plate, the values
are not greatly different. A relation, Cp/I¢ = 0.28 had already been proposed by
Fage & Johansen (1927; see also Roshko 1955, and Bearman 1967) based on the
von Karman vortex street drag formula, where the value of 0.28 is obtained from the
theoretical ‘stable’ value of y./(l./2), which as was seen above is significantly larger
than the observed value.

The ratio of lengthscales in the base region for the two geometries is less clear.
If it is hypothesized that £y, ~ Lo ~ &, then U2 JU%, . ~ [(Fo)sq/(To)eirc)* = 2.9,
roughly agreeing with observed ratios. A candidate for this common lengthscale is
the length of the vortex formation region proposed by Gerrard (1966). CC defined
this as the point at which mean vorticity first becomes negligible upstream of the
saddle of the shed vortex. In the present results, this occurs between x = 1.5 and
x = 1.75, which is similar to the x = 1.6 reported by CC for the circular cylinder. This
hypothesis is not necessarily strongly dependent on the choice of origin at the centre
of the cylinder. An alternative origin might be the downstream edge of the cylinder, in
which case the length of the vortex formation region is the distance from the farthest
downstream solid boundary. This choice of an origin would still be consistent with

~J16x135=17, (8)
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the hypothesis that the base-region lengthscales for the two cases are comparable.
The comparison should be qualified, since the size of the formation region is known
to vary with the free-stream turbulence level, which differs in the two cases.

Since, in the near wake, the ratio of peak magnitudes for the square cylinder to
those for the circular cylinder is approximately the same as for the periodic stresses,
the scaling argument for periodic stresses could be applied to the turbulent stress
and would give reasonable estimates. In the base region, however, the peak values of
the turbulent stresses are typically only about 50% larger than those reported for a
circular-cylinder, dramatically different from the more than 200% disparity in the case
of peak periodic stresses. The scaling argument requires modification in applying it to
the base region. For the turbulent characteristics in the base region, it is argued that
the appropriate lengthscale is not the length of the vortex formation region, but rather
the cross-stream wake width. This is identical to the traditional model! of the steady
far wake, but is arguably also true of the unsteady base region. The cross-stream
scale for the square cylinder is evidently larger than that for the circular cylinder; the
(global) mean width of the square-cylinder wake is &~ 25% wider than that of the
circular cylinder wake in the base region. With a ratio of lengthscales based on mean
wake widths, the peak turbulent stresses for the square cylinder would, according to
the scaling argument, be =~ 60% larger than those for the circular cylinder, in rough
agreement with the observed values. Thus, in the base region, whereas streamwise
lengthscales are important for periodic motion, cross-stream lengthscales dominate
where the turbulent motions are concerned.

4.3. The base region

The evolution of vortex structures in the base region contrasts with their quasi-
equilibrium state in the near wake. A sequence of (@)-contours in the base region at
different phases is shown in figure 18. Overlaid on these are contours showing regions
of high (k) (figures 18a, d, g, j, m), high (—u'v") (figure 18b, e, h, k, n), and high (P)
(figures 18c¢, f, i, 1, 0). In phase (1,11), a vortex has just been shed from the top, signalled
by the ‘necking’ of the (negative) vorticity contours (the length of the vortex formation
region was estimated from such a necking region). In addition to the high-(P) region
expected near the saddle region, another is observed at (x,y) = (3.3,0.3) surprisingly
near a vorticity peak. By phase (5,15), the development of a clear vorticity peak
(at (x,y) =~ (2.1,0)) is accompanied by downward indentations in the (+)-vorticity
contours near the cylinder, resulting in a vorticity saddle at (x,y) ~ (1.5, —0.8). Going
from phase (1,11) to phase (5,15), the vorticity peak has increased in magnitude,
indicating a tendency to vorticity concentration. The high-(—u'v’) contours contained
within high-(w) contours of a single sign (e.g. at (x,y) = 1.2,—0.75) in phase
(1,11)) differ from those on the opposite side of the cylinder as well as those farther
downstream, in being located in high-(w) regions, precisely as in traditional models
of shear-layers.

At the same time that, on the upper side, a vortex structure is shed, on the lower
side, the separated shear layer decelerates, a vorticity saddle is formed, and the
location of the peak (—u'v’) moves downstream. By phase (7,17), the vorticity saddle
and the (—u'v')-peak coincide. (—u'v’) is not necessarily negligible in the separated
shear layer, for a saddle point in the (—u'v')-distribution may be formed between the
shear layer region and the vorticity saddle. As the vortex structure is about to be
shed (phase (9,19) or phase (1,11)), the (—u'v')-peak moves from the vorticity saddle
towards the zero-(w) region. At shedding, the (—u'v’)-peak is found in regions of
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FiGURE 18. For caption see facing page.
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negligible (w), but the region is no longer a vorticity saddle (though it may be a
streamline saddle, see the Appendix).

Peaks in (k) are not always associated with a single structure as is the case in the
near wake. In phases (1,11) and (9,19), a double peak is observed. A small peak
is found between two structures at a zero-{w) location near the (—u'v')-peak. The
more extensive peak is entirely within one structure, situated away from the high
(—u'v')-region, but only at a later phase do the (k)-peak and {w)-peak overlap. The
high-(k) region first straddles the zero-(w) line, and then the (k)-peak that originated
in the peak-(w) shear-layer region grows in extent, and moves downstream, such
that the (—u'v')- and the (k)-peaks become separated. The little decay in the peak
magnitude of (k) between the attached and the shed structure differs from the much
faster decay in (—u'v’) and (w).

Both (k) and (—'v’) may influence the form of the (P)-contours. Here (k) may
also be used as a proxy for ((v'%) — (u'%)), since (v'?) is the dominant component. The
(P)-peak is found close to the (—u'v’)-peak, but (P) may still be substantial where
(—u'v') is zero because (k) is large. Even where (—u'v’) dominates, large values of (k)
may displace the (P)-peak away from the (—u'v')-peak. In the early phases, before
the (+)-vorticity saddle is formed, (P) is high in the separated shear-layer region, but
with the formation of the vorticity saddle, a high-(P) region appears (phase (7,17)),
much like the (—u'v')-peak. Later, again like the (—u'v')-peak, the (P)-peak moves
away from the vorticity saddle, first towards a region of zero (w) between the vortex
structures, and then forms double peaks, one in each structure.

4.4. Asymmetries, anomalies, and conceptual models

Conceptual models of the near wake portray the high-(P) region as symmetric about
the saddle and aligned with the diverging separatrix. In this study, regions of peak
(—u'v') and (P), though aligned with the diverging separatrix, were located upstream
of the saddle and closer to the centreline. The data of CC are believed to support
this observation, though the smaller lengthscales blur the distinction between the
(—u'v')-peak and (P)-peak on the one hand and a streamline saddle on the other. A
cross-stream asymmetry is inherent at the saddle. The diverging separatrix directed
towards the free stream enters a region of lower turbulence levels and smaller strain
rates. Hence, less turbulence is produced along it than along its counterpart, the
diverging separatrix directed towards the centreline, which enters a region of higher
turbulence levels and larger strain rates. CC argued that high (P) occurs in the saddle
region because of high strain rates there rather than because of high stresses. Though
it may be misleading to consider only shear strain, the (&)-peak does not coincide
with either the (P),-peak or the (P)-peak or with the streamline saddle. Anomalous
features of the (—u/v')-distribution, e.g. double peaks and peaks located near vortex
centres, point to the importance of transport effects not only on (k) as is generally
accepted but also on (—u'v’) at least in the base region. The possible importance of
negative (P) in determining features of the (—u'v')-distribution has also been little
explored.

In the base region, the region of peak (—u'v’) and (P) may, at different phases, be

FiGURe 18. Contour plots of (k) (a, d, g, j, m), (—u'v") (b, e, h, k, n), and (P) ((c, f. i, I, 0)
superimposed on contour plots of (w) in the base region; phase (1,11) (a—c), phase (3,13) (d-f),
phase (5,15) (g—i), phase (7,17) (j-I), and phase (9,19) (m—o0). Thick lines represent (k), (—u'v'),
and (P), thin lines represent (w); solid and dashed lines represent positive and negative values
respectively.
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associated more with a vorticity saddle, or with a region of zero (w), or be entirely
within a vortex structure but away from any vorticity saddle (though possibly at a
streamline saddle). In the development of the vorticity saddle at (x,y) = (1.7,—0.8)
during phase (3,13) to phase (7,17), the vorticity saddle, in spite of relatively high
values of (w), seems to be the key feature since the peak (—u'v') occurs there. It is
argued in the Appendix that, in phases (3,13) to (5,15), the vorticity saddle cannot be
a streamline saddle. The influence of the shear layer and vortex structure on the other
side seems relatively unimportant during these phases. Immediately prior to shedding
(phases (9,19) in the bottom half and (1,11) in the upper half of the flow region),
the nose of the negatively signed vortex structure seems to interact more vigorously
with the positively signed vorticity saddle in terms of mixing of fluid elements of
opposite vorticities. Hence, the peak (—u'v’) moves from the vorticity saddle to a
region between the opposite-signed structures, ie. a region of zero (w) but high
vorticity gradients. A vorticity saddle is a prerequisite for this stage, but the vorticity
saddle itself ceases to be dominant with regard to turbulence production.

5. Summary

The unsteady turbulent flow around a square cylinder was studied experimentally
by obtaining phase-averaged velocity statistics from two-component laser-Doppler
velocimetry measurements. The qualitative features observed agreed in some respects
with previous measurements of flow around a circular cylinder and other bluff bodies.
The distinction between the base region and the near wake emphasized differences
in the flow characteristics and their evolution. Quantitative comparisons with the
circular cylinder showed that lengthscales were larger not only in the cross-stream
but, in the near wake, also in the streamwise direction. Peak values of both turbulent
as well as ‘periodic’ stresses were also significantly larger than those measured behind
the circular cylinder. A scaling argument based on the circulation discharged into
the wake was proposed to account for the differences in velocity scales for both
periodic and turbulent components. The decay of the ‘periodic’ stresses was found
to be noticeably faster than that of the turbulent stresses in the base region. It
was suggested that, in the base region, the periodic component was governed by the
streamwise size of the vortex formation region, while the turbulent component was
governed by the wake width.

Two related features of the near wake were highlighted. A double peak in the
(—u'v')-distribution associated with a vortex structure is found in the near wake,
with one peak occurring in the vortex peak region. The second feature concerns the
possible importance of turbulence production in regions close to the vortex centre
due to large values of normal Reynolds stresses. This could possibly explain the
centre peak in (—u'v’), although non-local transport effects also are likely to play a
role. As the vortex peak moves downstream and becomes more circularly symmetric,
the contribution due to the normal (in conventional coordinates) production and,
hence, the centre peak in (—u'v’) decreases in relative importance. Flow topology was
examined and a distinction between vorticity and streamline saddles was drawn. In
the base region, a vorticity saddle is not necessarily a point of negligible spanwise
vorticity, and peaks in (—«'v’) may, at different stages of the shedding process, be
associated with the separated shear layer, the vorticity saddle, the region of zero
vorticity or the streamline saddle. While peak production was often associated, if not
necessarily identical, with peak Reynolds shear stresses, large values of turbulence
production were also observed near vortex peaks.
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FiGure 19. Contour plots of (D) for (a) phase (5,15), and (b) phase (9,19): contour levels — + 0.05,
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Appendix. The critical points of a stream-function distribution

The critical points of a stream-function distribution, ¢(x,y), are defined by the
conditions that ¢, = 0 and ¢, = O simultaneously, where subscripts denote the
partial derivative with respect to the subscripted variable. This is identical to the
requirement that u = 0 and v = 0 given in discussions of flow topology. Whether
a critical point, (xg, yo), is a local extrema (centre) or a saddle depends on the sign
of the discriminant, D(x,yo) = [(j)x}.2 — Oxx®yyllixoye) I D(x0,y0) < O, then (xo, yo)
is a local extrema, while if D(xo,yo) > 0, (X0, yo) is a saddle. If D(xq,yo) = O, then
higher-order terms must be considered to determine the nature of the critical point.
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In terms of u and v, the discriminant can also be expressed as D = (u,)? + vxu,, which
is independent of reference frame velocity. An alternative approach which gives a
similar criterion can be based on linearizing the flow in a localized region of the
critical point (Perry & Fairlie 1974; Ottino 1989).

If D < 0 in a region, then, irrespective of the reference-frame velocity, a streamline
saddle cannot be found in this region. Similarly, if D > 0 in a region, then a
streamline saddle may be found, the location of which would depend on the choice
of reference-frame velocity. At a point of zero vorticity, then D = (u,)? + (u,)%, which
is non-negative. Thus, a point of zero vorticity may be a saddle, provided it is also a
stagnation point (in an appropriate reference-frame). Whether the choice of reference
frame velocity which would make a zero-vorticity point also a stagnation point is a
physically ‘relevant’ velocity, e.g. corresponding to vortex celerity, must however be
considered. The contours of D (or in the present specific context, (D)) are shown for
phases (5,15) and (9,19) in figure 19 Regions of peak negative (D) correspond closely
to regions of peak vorticity (figure 7a). The vorticity saddle at (x,y) =~ (1.7,-0.9) is
located in a region where (D) < 0, implying that a streamline saddle cannot be found
at the vorticity saddle. Although some error might be expected in both measurement
and computation of gradients, the region of negative (D) is sufficiently extensive
to make this inference fairly reliable. High levels of vorticity do not exclude the
possibility of a streamline saddle. A positive-(D) region at phase (9,19) penetrates a
region of high vorticity at (x,y) =~ (1.6,—1), and a streamline saddle can indeed be
found in the region (figure 6b).
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