Установки производства серы (УПС) из технологического газа, получаемого при добыче и переработке нефти, широко распространены на разных нефтеперерабатывающих заводах (НПЗ).
Как правило, в УПС присутствует термический подогреватель газа и каталитический реактор. Объединение этих двух аппаратов в один технологически оправдано и экономически целесообразно.
Рассматривается течение смеси газов в камере сгорания ГТУ при «холодной» продувке камеры и при горении. Моделируются физические процессы: движение идеального газа, теплоперенос (конвекция и теплопроводность), турбулентность и горение метана (модель Аррениуса-Магнуссена). Приводятся результаты расчета температуры смеси и концентрации горючего в контрольных сечениях на каждом из режимов. Показана структура трехмерного течения, поля давления и температуры газовой смеси при «холодной» продувке и при горении.
Приводятся рекомендации для настроек математической модели при моделировании горения в камерах сгорания.
Рассматривается возможность определения пульсаций температуры на основе URANS подхода. Представлены результаты численного моделирования процессов перемешивания трех разнотемпературных струй натрия с использованием программного комплекса FlowVision и модели турбулентного теплопереноса LMS. Приведено сравнение результатов расчетов и экспериментальных данных. Обоснована возможность определения энергонесущих частот температурных пульсаций при перемешивании разнотемпературных потоков натрия с использованием URANS подхода и модели LMS.
Рассмотрены особенности формирования поля температуры уходящих газов на выходе из малоэмиссионных камер сгорания (МЭКС) газотурбинных двигателей (ГТД). Показаны основные проблемы, связанные с их доводкой. Представлены результаты численных исследований влияния степени выгорания топлива по длине МЭКС на температурную неравномерность уходящих газов. Проведена оптимизация конструкции смесителя ввода воздуха на разбавление по количеству, форме и местоположению отверстий. Представлена методика разработки смесителя для камер сгорания подобного типа.
Программный комплекс FlowVision (версий 3.08 и 3.09) был использован для расчета обтекания двухлопастного ротора ветроэнергетической установки малой мощности (~20 кВт), экспериментально исследованной в NREL. Были получены интегральные характеристики ротора и детальные поля параметров течения в диапазоне скорости набегающего потока, полностью отвечающем интервалу экспериментальных исследований (5 м/с - 25 м/с). Вращающий момент аэродинамических сил, действующих на ротор, был выбран в качестве параметра, по которому проводилось сравнение численных и экспериментальных данных.
С помощью ПК FlowVision HPC проводилось моделирование течения жидкого натриевого теплоносителя в проточной части верхней камеры реактора MONJU. Расчеты были проведены для расширения круга верификационных примеров и дополнительного тестирования одной из моделей турбулентного теплопереноса применительно к задачам, максимально приближенным к реальным процессам.
С помощью ПК FlowVision HPC проводится моделирование процесса расхолаживания реактора БН. Расчеты были проведены для подтверждена эффективность пассивной системы аварийного отвода тепла с погружными теплообменниками.
Работа посвящена практическому применению FlowVision для разработки и доводки малотоксичных камер сгорания для перспективных ГТУ, к конструкциям которых предъявляются всё более жёсткие требования.
Целью работы было создание горелки нового типа, дающей устойчивое пламя с низкой выработкой оксидов азота.
Разработанная горелка установлена на ряде ТЭЦ АО МОСЭНЕРГО.
Разработка горелки с низкой эмиссией оксидов азота, компания "Игл Дайнемикс", pdf: 748КБ
С помощью комплекса FlowVision выполнено моделирование взаимодействия потоков жидкости внутри центробежно-струйной форсунки с тангенциальным вводом периферийного потока.
Полученные результаты хорошо согласуются с экспериментальными данными.
Уфимский государственный нефтяной технический университет, pdf: 340КБ
Проведено численное моделирование горения метана с низкой эмисссией оксидов азота в факеле вихревой газовой горелки и моделирование сжигание метана в водогрейном котле при работе группы горелок.
Обтекание круглого цилиндра, смещённого с аэродинамической оси сильно закрученного циклонного пoтока
Моделирование обтекания круглого цилиндра, смещённого с аэродинамической оси сильно закрученного циклонного пoтока.
Архангельский государственный технический университет, Россия, Университет прикладных наук, Эмден, Германия, pdf: 918КБ